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INTRODUCTION
In modern petrography an increasingly significant role 

is played by automated numerical computations, which 
determines a higher demand of quantitative analysis. 
While petrographers’ experience still plays a huge role 
in the recognition of specific features in rocks, it may also 
lead to misinterpretations driven by subjectiveness. Hen-
ce, numerous statistical analyses can be applied on rocks 
to objectively extract quantitative information through 
advanced software solutions. However, while machines 
outperform humans in long and recursive tasks, com-
puter-driven analyses can be misleading and may intro-
duce other kinds of biases if not properly overseen by 
an expert operator. Therefore, petrologists’ experience 
is still fundamental to validate machine-generated data 
and identify petrogenetic processes. 

Machine learning (ML) algorithms have been widely 
experimented to support petrography, by processing 
several types of petrographic data, such as bulk-rock 
chemistry (e.g., Ren et al. 2019; Itano et al., 2020) and op-
tical thin section images (e.g., Su et al., 2020; Visalli et al. 
2021). Optical scans of rocks thin sections, however, can 
sometimes be a complex type of input to process, and 
although efforts have been made towards the realization 
of databases of optical thin section images (e.g., Quinn 
et al., 2011), an open-access archive of standardized and 
labeled data is missing. X-ray elemental maps are yet 
another type of input data that significantly benefits from 
the application of ML algorithms. Unlike punctual chemi-
cal analyses, the information is not scattered and preven-
ts possible biases introduced by the choice of points lo-
cations. Therefore, powerful tools have been developed 
to quantify X-ray maps (e.g., Lanari et al., 2014; Argan-
da-Carreras et al., 2017; Ortolano et al., 2018). Generally, 
the acquisition of X-ray elemental maps and BSE maps 
is an efficient and relatively cheap process; however, an 
online structured database of labelled X-ray maps or 
BSE maps is again missing. In this scenario, X-Min Learn 
is here presented. This stand-alone software allows an 
interactive and friendly application of ML techniques for 

automatically identifying minerals from EDS and WDS 
X-ray maps and any other type of multi-spectral image 
data, including, for example, BSE maps. It also allows the 
development of custom ML models for specific research 
needs in a friendly way, meeting the needs of users not 
experienced in computer coding. 

Nevertheless, usually fabric plays a central role in the 
final properties of the lithotypes as well. In this view, Arc-
StereoNet, which has already been published in Ortola-
no et al. (2021), is also presented. This ArcGIS® toolbox, 
useful for the statistical analysis and projection of structu-
ral data, allows the comparison of oriented data from the 
outcrop scale to the thin section scale within the same 
ArcGIS® project. ArcStereoNet allows the application of 
statistical analysis on stereographic projections and rose 
diagrams, while also taking full advantage of default GIS 
mapping processes, expanding the potential of other 
pioneering tools (e.g., Kociánová & Melichar, 2016). 

X-MIN LEARN
The current free software for the classification of X-ray 

maps (e.g., Lanari et al., 2014; Arganda-Carreras et al., 
2017; Ortolano et al., 2018) implement unsupervised 
and supervised classifiers. The latter are usually trained 
on specific user-drawn regions of interest (ROIs) and then 
employed to classify the full sample. While this approach 
(referred to as “lazy learning”) often yields very accurate 
results, it may also introduce dangerous user-driven bia-
ses (Nickerson, 1998; Mehrabi et al., 2021). Lazy learners 
just memorize the information and then use it to classify 
new data by comparison (Hendrickx & Van Den Bosch, 
2005). On the other hand, “eager learners” process the 
training data to extract a function that describes the rela-
tionships occurring between the features of the training 
data, hence producing a generalized enough model that 
can foresee pixel variance within the same mineral clas-
ses.

X-Min Learn (XML) implements both unsupervised 
and lazy supervised classifiers as well. In addition to 
that, however, it also includes a collection of interactive 
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tools for a step-by-step development of custom eager 
ML models within its “developer’s toolkit”, simplifying 
the compilation of ground truth datasets and including 
statistics and graphics useful for the inspection of lear-
ning processes. After a custom model is stored, it can 
be employed to classify new samples automatically, not 
requiring users to trace additional training ROIs.

Classifiers
X-Min Learn provides three ML algorithms to identify 

minerals: K-Means (MacQueen, 1967), an unsupervised 
classifier, K-Nearest Neighbours (k-NN – Cover & Hart, 
1967) a lazy supervised classifier and Multinomial Logi-
stic Regression (MLR – Bridle, 1990) a user-trainable ea-
ger supervised classifier. They all generate a mineral map 
and an associated probability map, this latter displaying 
the classification confidence score of each pixel (Fig. 1d-
f). Probability maps are useful for highlighting pixels lo-
cated at the boundary of two different minerals or near 
fractures, displaying a mixed chemical composition (i.e., 
mixed pixels). This score can be used as a rejection factor 

to exclude low confidence pixels, providing a stronger 
user control.

In order to compare the classifiers’ performance, they 
are here tested on SEM-EDS X-ray maps collected from 
a thin section of a metamorphic rock. The classification 
results are displayed in Fig. 1. The time required for the 
computation was comparable for each classifier (i.e., 
under 10 seconds). Both k-NN and K-Means, however, 
required additional time to either draw training ROIs or 
set the appropriate number of clusters and label them. 
The MLR model was previously trained using other meta-
morphic rocks samples collected from different outcrops 
and lithotypes, and therefore did not require additional 
training time, achieving a fully automatic mineral classi-
fication (Fig. 1a). It assigned some pixels to mineral clas-
ses that are not truly occurring in the analyzed sample 
(i.e., FeOx, Px, and Rt, namely iron oxide, pyroxene, and 
rutile). These are noisy pixels, that the model assumes 
as true mineral classes. Although some of them may just 
be excluded with a confidence threshold, this issue can 
be fixed with post-processing operations. The overall re-

Figure 1 Sample classification using the three classifiers of X-Min Learn: (a) MLR, (b) k-NN, (c) K-Means with (d, e, f) their linked probability maps.
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sult is in accordance with that of the other classifiers. The 
k-NN classifier was steered by the operator, who traced 
several training ROIs on the occurring mineral phases, 
and, therefore, the mineral map displays the expected 
classes (Fig. 1b). While this behaviour is appreciated be-
cause provides a stronger user control over the classi-
fication, it can also be a dangerous source of sampling 
and confirmation biases (Nickerson, 1998; Mehrabi et 
al., 2021). The main drawback is that tracing the training 
ROIs is time consuming and is required for each analy-
sis. The K-Means differs from the previous classifiers as 
it employs an unsupervised learning strategy to cluster 
the data into a K number of classes defined by the user. 
Although being the most unbiased of the available clas-
sifiers, the main drawback of K-Means is that its output 
classes are not labelled with mineral names, thus the re-
sult must be interpreted. Furthermore, it can sometimes 
struggle with uneven sized clusters, making it not the 
best choice when analyzing rocks with very imbalanced 
mineral amounts. Indeed, since garnet displays a high 
number of pixels (majority class), K-Means separates its 
zonation patterns in different clusters (i.e., Grt1, Grt2, 
Grt3, Grt4) at the expenses of minority classes such as 
titanite (Ttn) and K-feldspar (Kfs) that are not detected 
(Fig.  1c).

A sub-class analysis can also be achieved with XML 
(e.g., identification of mineral zonation patterns), by re-
cursively applying the algorithms to already classified 
mineral maps. The data is automatically masked in order 
to focus the sub-phase classification only on the selected 

class. This process can be repeated an unlimited number 
of times, also using a sequence of different classifiers. 

Phase Refiner

The Phase Refiner allows the removal of noisy pixels 
(i.e., small classification errors) produced by a classifier, 
which can negatively affect further analysis on mineral 
maps (e.g., sub-phase identifications). It provides ima-
ge processing algorithms in two modalities: basic mode 
and advanced mode. The basic mode allows the appli-
cation of a maximum frequency filter to smoothen the 
entire mineral map, while the advanced mode provides 
binary morphological operations to refine each mine-
ral class individually. In both modes, users can set the 
sliding window size and shape to obtain different refi-
nement results. In advanced mode ROIs can be traced 
to restrict the refinement only to specific areas of the 
sample and several algorithms can be consecutively ap-
plied on different phases, guaranteeing a complete user 
control over the final result. Six different algorithms are 
available: Erosion, Dilation, Opening, Closing, Erosion + 
Reconstruction and Fill Holes. Refined and validated mi-
neral maps could, in turn, be employed as ground truth 
data to train new ML models.

Developer’s toolkit
X-Min Learn is the first mineral-oriented software that 

allows users to train mineral classifiers by providing a 
collection of interactive tools for a step-by-step deve-
lopment of custom eager ML models, using fully classi-

Figure 2  a) Workflow of the developer’s toolkit, that allows users to build custom ML models with interactive tools, such as the Dataset Builder (b) 
and the Model Learner (c)
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fied and validated samples as training data (Fig.  2). A 
lazy classifier trained with user-drawn ROIs is prone to 
be affected by confirmation bias (Nickerson, 1998), as 
operators are led to modify the ROIs multiple times until 
the model generates a result that aligns with their initial 
hypothesis. Fully classified samples, on the other hand, 
provide training data with a larger intraclass variance, 
since all their pixels are processed rather than just those 
contained within arbitrary ROIs. The evaluation of XML’s 
custom classifiers, moreover, is not based on the result 
of a specific classification (i.e., another possible source 
of confirmation bias), but rather on graphics and statisti-
cs during the learning process. Finally, another advanta-
ge of providing the instruments to build custom ML clas-
sifiers is that users can freely choose how to train their 
models, potentially developing highly specialized clas-
sifiers. The developer’s toolkit gathers tools for ground 
truth datasets management (Dataset Builder – Fig.  2b) 
and for the actual training of custom machine learning 
models (Model Learner – Fig.  2c).

Dataset Builder

The Dataset Builder automatizes the compilation of a 
human readable, machine friendly, standardized dataset 
from validated examples of already classified data (i.e., 
ground truth data). Each instance (i.e., row) of such da-
taset is populated with the features (the numerical va-
lues stored in the input maps’ pixels) and the correspon-
ding labels (mineral class stored in the classified mineral 
maps). Users can also operate several dataset refinement 
operations (e.g., renaming, deleting and merging mine-
ral classes). The dataset is saved as a CSV file; this file 
format was chosen for both its wide compatibility and its 
popularity among most users.

Model Learner
The Model Learner allows users to stepwise build new 

custom ML models after having compiled a ground truth 
dataset with the Dataset Builder. Custom models can 
be tailored to solve various tasks, from recognizing the 
most common mineral classes in different rock types, to 
identifying intra-class variabilities of individual mineral 
species. Users may also develop models for classifying 
specific lithotypes or even samples. Moreover, the Mo-
del Learner allows users to update their models with new 
training data, refining them over time.

The adopted ML algorithm is the Multinomial Logistic 
Regression (Eq. 1), which is paired with the Cross-En-
tropy loss function for the quantitative evaluation of the 
model’s errors (Eq. 2) and the gradient descent algo-
rithm for the model’s optimization (Eq. 3). Here 𝜗 are the 
model’s internal parameters, x the input features, K the 
number of mineral classes, 𝜅 the class id (with 𝜅 ∈ [0, K)), 
y the true mineral class, N the train set size, ε the learning 
iteration, η the learning rate, λ the weight decay and μ 

the momentum. 

The learning operations consist of an empirical fine 
tuning of the model’s hyperparameters (i.e., ε, η, λ, μ) 
performed by users with the aim of optimizing the mod-
el’s performance. Such operations are reiterated several 
times with different settings, until a satisfactory perfor-
mance is achieved. The tool provides interactive instru-
ments for the evaluation of the performance, such as 
learning scores, loss curves and confusion matrices (Fig.  
2c). The automatic pseudo-randomizations that are op-
erated during the learning session are controlled by a 
random seed, that can be set for reproducibility purpos-
es. Hence, two learning sessions with same input data 
and hyperparameters settings will always produce the 
identical result if the same seed is adopted. 

Various pre-processing operations can optionally 
be performed on the train set, such as polynomial fea-
tures mapping for the identification of non-linear pat-
terns in the data (Theodoridis & Koutroumbas, 2006) 
and balancing operations. These last consist of over- 
and under-sampling algorithms as implemented in the 
open-source Python library imbalanced-learn (Lemaître 
et al., 2017 and references therein). They are particularly 
useful to address the problem of imbalanced datasets 
(Kaur et al., 2019), which occurs when training data con-
tains different amounts of examples per class, that nega-
tively impact the accuracy of supervised ML classifiers. 
This issue frequently affects mineralogical datasets, as 
the amount of minerals extremely differs in rocks depen-
ding on the mineral species.

Case study

An application of XML for the extraction of quantitative 
petrographic data from a natural rock is here described. 
The collected sample (GC29) consists of a late-Variscan 
amphibolite from the Aspromonte Unit, NE Sicily (Cirrin-
cione et al., 2015 and references therein). From a thin 
section of GC29, three micro-domains were selected, 
depicting three relict eo-Variscan garnets surrounded 
by symplectitic micro-structures. WDS X-ray elemental 
maps and BSE maps were collected and then analyzed 
with XML.

The first micro-domain was classified with the k-NN 
classifier (Fig.  3a). The training ROIs were validated with 
WDS punctual chemical data and optical microscope 
analysis. A custom ML model was trained with the de-

(1)

(2)

(3)
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veloper’s toolkit using the first micro-domain as ground 
truth data. Thus, the model was tailored for the classi-
fication of the sample GC29, achieving an accuracy of 
98.8%. Consequently, the other two micro-domains were 
automatically classified with such model (Fig.  3b,c). Fi-
nally, K-Means classifier was applied on amphibole, cli-
nopyroxene, garnet and plagioclase classes to detect 
the occurrence of sub-phases in each micro-domain. This 
allowed the identification of mineral zonation patterns, 
that were interpreted as the effect of the symplectitic re-
action, and the estimation of the reaction rate of garnet 
porphyroblasts (Fig. 4). This preliminary procedure can 
be helpful to infer the effective reactant volumes and, in 
turn, to identify the effective bulk chemistry (Zuluaga et 
al., 2005) and obtain more reliable pseudo-sections and 
phase diagrams.

ARCSTEREONET
ArcStereoNet (ASN) is a Python-toolbox that adds geo-

logical-oriented tools to ArcGIS®, allowing the projection 
and the statistical analysis of georeferenced oriented 

data, preserving its coordinates in real space. If paired 
with ad hoc tools like Micro-Fabric Analyzer (MFA – Visalli 
et al., 2021), ASN can also process micro-structural data 
collected from thin sections of rocks. Available statistical 
functions include contouring, cluster and girdle analysis 
and mean vectors extraction. A new clustering algorithm 
(i.e., MEAD – Mean Extractor from Azimuthal Data) is also 
included in the toolbox. The algorithms can be compa-
red simultaneously, allowing a more reliable interpreta-
tion of the data distribution. ASN requires the following 
information: azimuth angle (dip-direction, strike, trend), 
dip angle, data format type and data label, which can au-
tomatically retrieve by accessing the attribute tables of 
ESRI® shapefiles. The dataset management operations 
provided by ArcGIS® can be leveraged to manage and 
standardize the data. 

Tools and algorithms

Three tools are included in ASN: Stereoplots, Rose 
Diagrams and Graph To Hyperlink, respectively useful to 
generate stereographic projections and rose diagrams 

Figure 3  Classification of three micro-domains from GC29 sample. The 
first micro-domain (a) was classified with k-NN and then processed with 
the developer’s toolkit to generate a custom ML model, which allowed 
a fully automatic classification of the other two (b, c).

Figure 4  Sub-phase identification achieved with K-Means for amphibo-
le, clinopyroxene, garnet and plagioclase on each micro-domain. The 
estimated reaction rate of each garnet porphyroblast is, respectively, 
0.78, 0.55 and 0.38 
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and to connect them with the geographic position of the 
data. Stereoplots tool generates lower hemisphere equal 
area or equal angle azimuthal projections, displaying 
cyclographic traces, and/or poles for planar data, and/
or points for linear elements. It allows the overlaying 
of contours and the comparison of multiple clustering 
algorithms, as well as the extraction of mean planes or 
vectors for each cluster. Rose Diagrams tool allows the 
identification of clusters and mean vectors as well. Rose 
diagrams can also be weighted based on a user-se-
lected parameter included in the input shapefile. Graph 
To Hyperlink tool is useful to link the plots generated by 
the previous tools to the spatial position of the data in 
the map. Positions corresponds to the mean latitude and 
longitude coordinates of plotted data. Users can click on 
each position to show a popup window displaying the 
hyperlinked plot.

ASN provides unsupervised algorithms for the reco-
gnition of recurring patterns in the data, allowing users 
to group the data based on orientation similarities (i.e., 
clustering) and then to extract the average value of each 
identified group (i.e., mean vector extraction). There are 
four available algorithms in the Stereoplots tool (i.e., 
MEAD, MEAD + Fisher, K-Means, Bingham) and one in 
the Rose Diagrams tool (MEAD). MEAD was created to 
provide a more user-controlled clustering algorithm. Azi-
muth and dip tolerance parameters can be fine-tuned 
to steer the algorithm towards the preferred clustering 
behaviour, also allowing MEAD to discard spurious (i.e., 
noisy) data. A slightly modified version of MEAD is imple-
mented in the Rose Diagrams tool to address some spe-
cific requirements of such types of projections. MEAD + 
Fisher is an alternative version of MEAD, where the mean 
vector extraction process is carried out by the Fisher fun-
ction (Fisher et al., 1993). It yields three statistics: R value 
(mean vector magnitude), confidence radius (mean vec-
tor confidence) and K value (dispersion factor). K-Means 
(MacQueen, 1967) strategy differs from MEAD mainly 
for the selection of the starting cluster centroid and for 
the absence of user-controlled tolerance parameters. 
Bingham (Bingham, 1974) does not perform a clustering 
process, but rather finds the best fit plane of a girdle-like 
distribution pattern. A full description and comparison of 
the algorithms is provided in Ortolano et al. (2021).

Case study

ArcStereoNet was tested by extracting, analyzing 
and comparing meso-structural (outcrop scale) and mi-
cro-structural (thin section scale) oriented data collected 
at Palmi (SW Calabria) within the Palmi Shear Zone (Fazio 
et al., 2017; Ortolano et al., 2020; Ortolano et al., 2021), 
integrated with meso-structural data virtually collected 
after an aerial photogrammetry survey. The Stereo-
plots tool was employed to analyze both the manually 
and the virtually collected meso-structural data (Fig.  5), 

while the Rose Diagrams tool allowed the analysis of 
micro-structural data (Fig. 6), which was extracted with 
the Micro Fabric Analyzer tool (Visalli et al., 2021) from 
thin sections of samples collected at the same outcrops. 
The analysis was performed on the minerals belonging 
to porphyroclastic domains, highlighting their preferred 
orientations. Here, pre-kinematic clasts behave as rigid 
phases during sub-simple shearing plastic deformation 
events (see Ortolano et al., 2020 for further details).

A correlation between the orientation of micro-structu-
ral and meso-structural data can be observed; the mean 
main foliation planes (outcrop scale) and the porphyro-
clasts (thin section scale) are oriented WNW – ESE. The 
porphyroclasts, which are surrounded by quartz-rich 
weak layers, determining a relatively small rheology 
contrast, facilitate wing formation, producing greater re-
sistance to the mylonitic flow and, in turn, clearer eviden-
ce of formation of sub-simple shear kinematic indica-
tors. Aerial photogrammetry data is in accordance with 
field collected data, enlarging the amount of available 
meso-structural data, previously scarce because of the 
impervious terrain. This further confirms the versatility of 
ASN in processing data collected from different sources 
and at different scales.

CONCLUSIONS
In the era of digitalization and big data collection, pe-

trography can benefit from the application of data scien-
ce techniques such as machine learning algorithms. In 

Figure 5 Modified after Ortolano et al. (2021). Meso-structural data 
(main foliations and stretching lineations) collected (a) manually and 
(b) after aerial photogrammetry survey
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this view, two new computer software, useful for the 
quantitative investigation of the mineralogy and the fa-
bric of rock samples, were introduced: a) X-Min Learn, 
that provides customizable machine learning algorithms 
to identify rocks minerals from thin section multi-spectral 
data and b) ArcStereoNet, that allows the statistical 
analysis of structural oriented data within the ArcGIS® 
environment. By encouraging users towards an aware 
application of the provided algorithms, both software 
allow the derivation of reliable interpretations and con-
straints, representing an important contribution towards 
the increasingly pressing demand of achieving quanti-
tative results in petrography. This is at the service of the 
most diverse facets of geosciences, from the resolution 

of petrological problems to micro-structural ones, pas-
sing through the field of geomaterial analysis.
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