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ABSTRACT 

In this doctorate work, a methodology was developed and assessed by combining image analysis 
techniques and neural network capabilities to classify some types of mineral inclusions and pores in 
archaeological potsherds; digital images acquired from thin sections via transmitted-light optical microscopy 
(plane and cross polarized) were used. Particularly, some Holocene potsherds (9000-3500 years B.P.), belonging 
to Takarkori rock-shelter archaeological site in the Tadrart Acacùs (SW Libya, Central Sahara), were considered 
as case study to such a purpose. The work may be considered as a pilot study to introduce pattern classification 
techniques in the field of archaeological ceramic petrography. 

The experimentation involved different phases. Image analysis was primarily performed to obtain binary 
images including regions corresponding to three types of mineral inclusions (i.e., quartz, calcareous aggregates 
and feldspars) and pores characterizing the considered potsherds. Characteristics observed in both plane and 
cross polarized images were used to develop a segmentation procedure customized for each type of inclusions 
and for pores using mathematical operators and automatic thresholding methods. Statistical and region features 
were finally computed for each segmented region to be used for creation of corresponding neural networks.  

Rather than using a monolithic neural network, a modular architecture that combines as many networks 
(called modules) as the number of classes was adopted. Three neural modules were firstly created, each trained 
to separately recognize quartz, calcareous aggregates and pores, and then combined into the corresponding 
modular architecture. This architecture was lastly extended introducing a new neural module to classify feldspars 
via an appropriate incremental strategy. The created modular classifier was then assessed on never-seen-before 
samples, providing a global classification accuracy of 91.4%. Particularly, the 99.1% of quartz, the 93.6% of 
calcareous aggregates, the 77.6% of pores and the 95.1% of feldspars were correctly recognized. 

The experimentation may be hence considered encouraging for the proposed application. However, 
further improvements and specific implementations of the methodology should be taken into account in order to 
better accomplish classification and characterization purposes of ceramic petrography applied to archaeological 
pottery.  

 
INTRODUCTION 

The application of artificial neural networks to image analysis as statistical pattern recognition technique 
may be considered a growing interesting task in many disciplines involved in digital image processing aimed to 
object recognition and classification (Jain et al., 2000; Egmont-Petersen et al., 2002). This largely depends on 
the well-known computational capabilities of neural networks which may be used to solve many pattern 
classification problems via emulating human learning model and properties such as non-linearity, high 
parallelism, noise tolerance and generalization (Basheer & Hajmeer, 2000). Generally, a neural network used as 
pattern classifier learns features describing a predetermined number of classes in such a way that, presenting the 
network successively with an unknown object, it should have the ability to assign the object to one of those 
previous learned classes. In this procedure, image analysis is used to extract numerical data by the interested 
objects detected in corresponding digital images to be used as features for learning and final classification. 
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The use of neural networks as image pattern classifiers was recently considered also in optical mineralogy 
to identify minerals and classify rocks and their textures by digital optical microscope images of thin sections 
(Thompson et al., 2001; Marmo et al., 2005; Fueten & Mason, 2007; Baykan & Yilmaz, 2010; Singh et al., 
2010). Actually, optical microscopy practice generally involves the operator to have sufficient knowledge and 
experience about optical-based classification and requires various add-ons to the microscope (e.g., special lenses, 
apertures and filters) to be practicable. Then, neural systems were trained aimed to identify and classify 
automatically, in a faster and reliable way, rocks and their textures using suitable features about colour, texture 
and shape of minerals extracted by appropriate processed and segmented digital images of thin sections. For 
example, optical image processing and artificial neural networks were adopted in the work of Thompson et al. 
(2001) to classify minerals belonging to samples of magmatic, metamorphic and sedimentary rocks. A 
classification accuracy as high as 93% was here provided. Marmo et al. (2005) automatically identify, according 
to the Dunham classification, carbonate textures unaffected by post-depositional modifications using digital 
images extracted by more than 1000 thin sections of Phanerozoic carbonates from different marine 
environments. A set of 23 features were extracted by the images appropriately processed and segmented. An 
accuracy of 93.4% was finally achieved. Moreover, also Singh et al. (2010) proposed the classification of rock 
texture using neural networks and image analysis. Particularly, RGB or grey-scale image of about 300 thin 
sections belonging to 140 basalt rock samples were used to extract 27 features. Finally, Baykan & Yilmaz (2010) 
used 6 features related to colour as extracted by corresponding processed images of selected rock thin sections to 
classify 5 different minerals, namely quartz, muscovite, biotite, chlorite and opaque.  

However, despite of rocks and other derived-manufactured materials, for archaeological materials such as 
pottery (which can be considered as “artificial rocks” for their mineral-based composition) the application of 
artificial neural networks as image pattern classifiers has not been yet similarly adopted, yet. Instead, it may 
believe that neural networks used as image pattern classifiers could have a high potentiality for ancient ceramic 
investigations. Actually, ability of generalization and learning of neural classifiers may be considered potentially 
useful to “translate” variability of these heterogeneous materials (which are characterized by highly different 
fabrics and microstructures) for their classification and description.  

To such a purpose, in this PhD thesis pattern classification techniques were introduced in archaeological 
ceramic petrography. This work may be thus considered as a pilot study in the field.  

 
THE PROPOSED METHODOLOGY 

To develop and assess the proposed methodology, some Neolithic potsherds (9000-3500 years B.P.) from 
Libyan Central Sahara (Eramo et al., in press) were considered as case study.  

Particularly, 22 thin sections of these potsherds (belonging to fabrics named QC and QF), characterized 
by three types of mineral inclusions (namely quartz, calcareous aggregates and feldspars) and secondary 
porosity, were used (Fig.1).  

Fig.1 - Fabrics of Takarkori potsherds named QC (left) and QF (right). 
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Rather than using a single monolithic neural network, which could contemporary classify the four 
interested classes, a modular neural architecture (Auda & Kamel, 1999; Jacobs et al., 1991) was adopted; it was 
composed by four different neural networks (called modules), each trained to separately classify quartz (named 
class 1), calcareous aggregates (named class 2), pores (named class 3) and feldspars (named class 4).  

This work involved thus three different phases: i) image analysis was performed to isolate regions 
corresponding to quartz, calcareous aggregates, feldspars and pores in order to extract features for further 
training of neural modules; ii) the modular classifier was created to classify initially only three of the interested 
classes and iii) it was finally extended introducing a new module aimed to classify the fourth class, proving thus 
scalability of such an architecture.  

Image Analysis 
Four pairs of RGB digital images each composed by a plane (P) and a cross (XP) polarized light image of 

1920×2560 pixel size were acquired, for every thin section, at a magnification of 2.5x using a ZEISS Axioskop 
40 Pol petrographic microscope equipped with a Nikon DS-5MC digital camera.  

Mathematical operators like addition, subtraction and exponential (Gonzalez & Woods, 2002) were 
adopted to manipulate both plane and cross polarized light images during image processing in order to 
emphasize useful characteristics of inclusions and pores. Actually, manipulation of both types of optical images 
may be particularly suggested because inclusion morphology is generally more clearly defined by observing the 
plane polarized light images, whereas their mineralogical distinction may be more easily achieved considering 
the interference colours in cross polarized ones (Whitbread, 1991). In this way, a segmentation procedure was 
finally developed that was customized for each class to be isolated. The automatic thresholding method Isodata 
(Ridler & Calvard, 1978) was finally applied. A set of 39 statistical and region features (Press et al., 1992; 
Gonzalez & Woods, 2002; Table 1), referred to the corresponding areas of P and XP images, were computed for 
each obtained binary region. Particularly, statistical features were computed for each R, G and B colour channel 
of the images. 

The freeware open-source image analysis software ImageJ1 (version 1.42 and later) was used to perform 
image processing and its plug-in Particles8_Plus2 for feature extraction. 

 
Table 1 - Features computed in this work 

Statistical Definition Region Definition 

Mode most occurring R-G-B values Solidity Area/Convex Area 

Median median R-G-B values Concavity Convex Hull-Area 

Average mean R-G-B values Rectangularity Area/Area Bounding Box 

Variance mean square deviation of R-G-B values    

Standard Deviation standard deviation of R-G-B values   

Skewness degree of asymmetry of R-G-B value distribution   

Kurtosis peakedness of R-G-B value distribution   

Average Deviation spread of R-G-B values from average   

Integrated Density sum of R-G-B values   

Min minimum R-G-B values   

Max maximum R-G-B values   

Entropy degree of variability of R-G-B values   

 

                                                 
1 http://www.imagej.nih.gov/ij/ 
2 http://www.dentistry.bham.ac.uk/landinig/software/software.html 
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Creation of the Modular Classifier 
Creation of modular classifier was aimed initially to classify three of the classes here considered, namely 

quartz, calcareous aggregates and pores. To address the neural modules of each class, the one-vs.-rest 
decomposition scheme was used (Chen & You, 1993; Anand et al., 1995); that is, a training set cT composed by 
a subset cT + containing the patterns that belong to a class (positive samples3) and by a subset cT −  containing the 
patterns of the remaining classes (negative samples) was created for learning of each class by each module. To 
such a purpose, the feature-vectors extracted by P and XP images were primarily tested to find the more efficient 
configuration to be used for each class. 

A multilayer perceptron neural network model (MLPNN; Haykin, 1999) was then implemented for each 
module using the MatLab® NPRTool (Neural Network Pattern Recognition Tool) v.7.10.0 (R2010a). 
Particularly, a two-layer architecture was adopted. A total amount of 16 neural network topologies were trained 
for each class module, obtained by ranging the hidden neurons from 5 to 80 using a rate of 5 neurons. The 
network topologies for each class providing the lowest classification error on the test set (Test Error), defined as 
the probability of error in classifying new objects (Wanas et al., 1999), were lastly selected to be used as neural 
modules. 

The modular classifier was finally created by applying the three selected classifiers simultaneously to an 
assessment dataset of unknown patterns (i.e., not considered for training) using the winner-take-all strategy (Lu 
& Ito, 1999) according to which, given an unknown pattern *x , the class with the highest confidence value 
namely ( ) ( )

1...
* max *c kk K

f f
=

=x x  is the final winning class. Precisely, the modular classifier is said to assign *x to 

class c if the following conditions holds:  

( )* 1cf δ− ≤x  and ( )*kf for k cδ< ≠x   (1) 

where δ is a real number, which denotes the error tolerance (in this work δ is set to 0.5). 
Let it denote by ( )f x  the actual output vector of the whole modular classifier, it may be written 

 ( ) ( ) ( ) ( )1 2 3, ,
T

f f f f⎡ ⎤= ⎣ ⎦x x x x    (2) 

and thus, for example, f(x*) = [0.9,0.4,0.1] means that pattern x* belongs to class 1, f(x*) = [0.3,0.7,0.2] 
means that pattern x* belongs to class 2 and f(x*) = [0.3,0.3,0.8] means that pattern x* belongs to class 3 
(Fig. 2).  

                                                 
3 The term sample or pattern indicates each segmented region of the interested classes with its corresponding feature-vector.  

Fig. 2 - Schematic representation of the created modular classifier. 
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Extension of the Modular Classifier 
A new neural module, aimed to classification of feldspars (class 4), was then introduced to extend the 

modular architecture. Seven training datasets were arranged here, which derived by all possible combinations of 
the interested class samples according to the one-vs.-rest decomposition scheme. The same conditions for 
training were adopted and, similarly, the classification error on the test was finally considered.  

Next, an incremental strategy was provided to integrate the new classifier into the pre-existing modular 
architecture. To such a purpose, a neural network denoted as combiner was trained which used as input features 
also the answers (i.e., the outputs) obtained by each of the four modules, performing thus a tuning operation. 
Actually, the output of the combiner was a four-weight vector w (having values ranging from 0 to 1), which 
returned a weighted final output for the extended modular neural classifier taking into account a balanced 
contribution of each class to the overall classification performance (Fig. 3). A total amount of 8 neural networks 
topologies were trained by considering a number of hidden neurons ranging from 10 to 80 and by using a rate of 
10 neurons to select the optimal topology for the combiner.  

The experimentation was finally concluded by creating a three-class and a four-class monolithic classifier 
to contemporary distinguish among the considered classes to be compared with corresponding modular and 
extended modular classifier.  

 
RESULTS 

Binary images containing 41085 regions corresponding to quartz, 9313 to calcareous aggregates, 35258 
to pores and 2594 to feldspars, for a total of 88250 regions, were finally obtained (Fig. 4) and corresponding  
39-feature vectors were derived both by P and XP images.  

The preliminary test performed to select the features to be used for each class training set returned the 
better accuracy for features extracted by XP images for both quartz and calcareous aggregates and by P images 
for both pores and feldspars. 

The number of positive samples (T+) in the training sets belonging to each class was finally established by 
considering the number of available samples for the less abundant class (i.e., class of feldspars). Particularly, 
1200 samples for each class were selected to such a purpose. Moreover, an equal number of samples 
corresponding on the whole to the number of positive samples was considered for the remaining classes to be 
used as negative samples (T-).  

Fig. 3 - Schematic representation of the adopted incremental strategy. 
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The 39×25×1, the 39×5×1 and again the 39×5×1 topologies were finally selected as neural modules for 
quartz, calcareous aggregates and pores, respectively with a training accuracy (Test Error) of 97.6%, 99.4% and 
100%. Moreover, the 39×15×1 and the 43×10×1 topologies were selected respectively as module of feldspars 
and as combiner with a training accuracy of 74.8% and 97.5%. 

Among the remaining samples available for each class, a total of 3000 were used to create the assessment 
dataset (namely 1000 unknown samples for each of the three considered classes) and hence to assess the 
modular classifier. Next, the assessment dataset was grown by adding also 1000 unknown samples of feldspars 
to assess also the extended modular classifier. 

Classification accuracy of modular and extended modular classifier are reported in the corresponding 
confusion matrices (Fig. 5). Particularly, the modular classifier globally provided a classification accuracy of 
89.8% on the assessment dataset, which was particularly higher for calcareous aggregates and quartz (99.1% and 
93.6% respectively), whereas it was lower for the class of pores (76.6%). Moreover, the quartz was mainly 
confused with the calcareous aggregates (58 errors over 64), the calcareous aggregates with the pores (6 errors 
over 9) and finally the pores were confused largely with the quartz (178 errors over 234).  

On the other hand, the extended modular classifier accuracy was higher mainly for quartz (99.0%) and 
also for feldspars (95.1%) and calcareous aggregates (93.6%) respectively, whereas it was lower for class of 
pores (77.6%). Quartz was confused here with calcareous aggregates (10 errors over 10), calcareous aggregates 
with feldspars (59 errors over 61) and vice versa (36 errors over 49). Finally, pores were confused mainly with 
quartz (162 errors over 224). A classification accuracy of 91.4% was globally returned by the extended modular 
classifier.  

Finally, the 39×10×3 and the 39×50×4 topologies were selected as corresponding three-class and four-
class trained monolithic classifier. Particularly, the classification accuracy finally provided on the same 
assessment dataset was higher for the three-class monolithic classifier than for the four-class (88.7% and 83.8%, 
respectively). 

(C) (D)

(B)(A) 

Fig. 4 - Example of binary regions of quartz (A), calcareous aggregates (B), pores (C) and feldspars (D). 
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DISCUSSION 

Segmentation was provided here thanks to the combined use of mathematical operators coupled with an 
automatic thresholding method. The effectiveness of this segmentation procedure was just proved by Eramo et 
al. (in press) since it was observed to be appropriate for all the samples investigated, which were easily and 
uniformly segmented in this way.  

Differently as expected due to their well-known optical similarity (Edwards, 2008), quartz and feldspars 
were not confused one with each other and rather recorded the higher classification accuracy. Especially, image 
acquisition strategy adopted for feldspars (namely images were captured in twinning positions) was thus proved 
to be powerful. Actually, feldspars and quartz show similar RGB values both in plane polarized and in cross 
polarized images but image texture provided by twinning allowed to distinguish feldspars by quartz, particularly 
in plane polarized images. Statistical features describing texture like Entropy (for each RGB channel) both with 
region features informing on shape like Solidity and Rectangularity were proved particularly to have a more 
discriminating ability to such a purpose.  

Oppositely, a lower classification accuracy was achieved for class of pores. Particularly, pores were 
observed to be mainly confused with quartz. Such misclassification was proved to be related to some samples of 
pores localized in plane polarized image, which had similar RGB values as the quartz in plane polarized images, 
recalling that features of both kind of images were respectively used for creation of corresponding neural 
modules. Moreover, most of the statistical features for pores and quartz were observed to show similar values, 
namely to have low discriminating ability in this case.  

Globally, it was especially observed that region features named Solidity and Rectangularity both with 
statistical ones named Entropy, Skewness and Kurtosis influenced classification accuracy improvement.  

Moreover, it must be noticed that classification accuracy globally increased after extending the created 
modular classifier. Actually, the incremental approach performed by the combiner let the modular classifier 
model developed to be flexible and thus easy-to-extend.  

Finally, both for modular and extended modular classifier, a lower classification accuracy was provided 
here by corresponding monolithic networks. It was then verified that, if the monolithic structure is grown, global 
classification accuracy decreases and time needed for training increases, as reported by the literature (Auda & 
Kamel, 1999).  

CONCLUSIONS 

The results obtained in this experimentation may be considered encouraging. Due to the lack of 
application in archaeometry of such an approach, which combines image analysis and particularly modular 
neural networks, it might be difficult to compare these results as well as advantages and problems encountered 

Fig. 5 - Confusion matrix of the modular (A) and of the extended modular classifier (B). 

(A) (B)
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throughout this experimentation. However, the advantages of modular neural architecture implementation was 
proved here as just for other pattern recognition problems (Auda & Kamel, 1999). These would be considered 
particularly promising for more complex archaeological pottery fabrics, including a large number of mineral 
inclusions (e.g., micas, amphiboles or pyroxenes) as well as for different kind of porosity. Actually, only 
incremental strategy needs to be controlled and, if ever necessary, appropriately improved, as well as new 
modules will be added. 

However, further improvements and implementation of the methodology may be considered in order to 
better accomplish classification and characterization purposes aimed by ceramic petrography. For example, 
future work for the case here proposed may be devoted primarily to search for an optimization of feature 
selection, as seen for class of pores. Moreover, the created modular classifier may be practically applied for 
classification of these types of inclusions and pores of different archaeological potsherds. 
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