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INTRODUCTION 

Order-disorder in aluminosilicates is an important phenomenon, which significantly affects 
thermodynamic stability of these minerals.  

In 2:1 phyllosilicates order-disorder phenomena occur in the octahedral and in the tetrahedral 
sheets. These minerals are involved in a variety of petrologically important reactions (Mottana et al., 
2002). 

Phengites [KAl2-y(Fe,Mg)y(Si3+yAl1-y)O10(OH)2; ideally y = 0.5] the dioctahedral micas of the 
muscovite-celadonite series (nomenclature after Rieder et al., 1998), are important phases of high 
pressure rocks (Compagnoni, 1977). Phase equilibria of phengites are used for geothermobarometry of 
metamorphic assemblages (Coggon & Holland, 2002; Sassi et al., 1994; Massonne & Schreyer, 1987). 
Knowledge of the thermodynamics of mixing and order-disorder effects in phengites is important for 
improving accuracy of a variety of geothermobarometers (Török, 1996). 

The experimental results on the order-disorder in phengites are contradictory due to the difficulty 
in discriminating between quasi-isoelectronic atoms Mg, Al, Si. 

Computer simulation methods provide an important tool for the understanding of the structure and 
the chemistry of phyllosilicates minerals at molecular level. 

Atomistic calculations based on ionic concept, where short-range interactions between the ions are 
modeled with Born-Mayer potentials, have been proved to being able to provide sufficient accuracy in 
reproducing structural and thermodynamic properties of many minerals. 

Modeling of 2:1 dioctahedral phyllosilicates with the empirical potentials is difficult because of 
the necessity to reproduce anisotropy of the structural properties within and between the layers. 

Empirical interatomic potentials have been used in structural studies of phyllosilicates with various 
types of substitutions (muscovite, margarite, pyrophyllite, beidellite, montmorillonite, smectites and 
illites) (Skipper et al., 1995; Teppen et al., 1997; Bosenick et al., 2001; Sainz Diaz et al., 2004; Palin et 
al., 2001). Unfortunately, fine structural features such as interlayer spacing, cannot always be reproduced 
with the empirical potentials to a sufficient level of accuracy. Thermodynamic properties of micas 
predicted based of such potentials are not very reliable. 

In particular, based on the results of simulation studies, Palin et al. (2001) have found consistency 
between the calculated and experimental 29Si NMR data on muscovite at about 3000 K. Based on these 
simulations the authors concluded that muscovite and micas in nature do not achieve thermodynamic 
intra-crystalline equilibrium. This conclusion seems to be in a contradiction with the common use of 
micas as ion exchangers. The layered structure of micas provides means for fast ion diffusion. A high 
level of consistency between 29Si NMR data obtained on natural and synthetic micas (Herrero et al., 
1987; Herrero & Sanz, 1991; Circone et al., 1991, Sanz et al., 2006) also suggests that the Al/Si 
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distribution in micas in hydrothermal experiments is able to achieve equilibrium at least at 600°C. Here 
the conclusion of Palin et al. (2001) is revisited based on the results of first principles calculations. 

Ab initio methods based on density functional theory (DFT) with periodic boundary conditions 
have previously been applied in studies of structure-property relations of various phyllosilicate (Tunega & 
Lischka, 2003; Sainz-Diaz et al., 2005). The strength of ab initio calculations was demonstrated by 
McConnell et al. (1997), who showed that empirical potentials lead to an overestimates of the Coulombic 
energy term (by ~ 30%) compared to the ab initio model in determinations of the enthalpy of disorder for 
exchange between Al and Si in simple aluminosilicate structures. 

In the light of these observations, we decided to check accuracy of empirical potentials for two end 
members celadonite and muscovite by comparing the excess energies predicted with the potentials and 
with DFT.  

We have found a very good linear correlation between empirical and ab initio excess energies. 
However, the excess energies predicted with empirical potentials appear to be significantly larger that 
those predicted ab initio. This shows that empirical potentials can be used to assess relative energy values 
of different configuration provided that the results are appropriately corrected. Here we show that Monte 
Carlo simulations of temperature-dependent properties of micas constrained with the excess energies 
determined ab initio or with the results of empirical potentials calculations, which are scaled based on  
ab initio results, are able to predict sensible thermodynamic results. 

 
THERMODYNAMICS OF THE MUSCOVITE-CELADONITE JOIN 

Atomistic methods can be applied to calculate the variations of energy between ordered and 
disordered structures along solid solutions joints. For instance, Vinograd et al. (2004, 2007a, 2007b) have 
done such calculations in garnets, pyroxenes and carbonates. 

Using large supercells allows the generation of disordered compounds and the study of ordering. 
Substituting atoms are randomly positioned in the supercell. In this way, Short Range Order (SRO) is 
easily avoided, and Long Range Order (LRO) can be neglected if the supercells are large enough. 
However, using very large supercells to compute lattice enthalpies is highly time-consuming. It is obvious 
that executing this process takes considerably longer for large cells containing numerous atoms. For this 
reason, using empirical potentials based software like GULP (General Utility Lattice Program) (Gale & 
Rohl, 2003) or a software package which uses density functional theory like CASTEP (Clark et al., 2005) 
alone is not ideal. 

Another method, known as Cluster Expansion (CE) (Connolly & Williams, 1983, Sanchez et al., 
1984) based on the Js formalism allows a reliable estimation of the lattice energy of very large supercells. 
The Js formalism is derived from the cationic ordering theory (Bosenick et al., 2001, Warren et al., 
2001). 

For solid solutions and end-member phases which show order/disorder effects (such as the Al/Si 
ordering in the tetrahedral sheet of micas), at least a few dozen of structures per composition are 
necessary to represent energetic variations between disordered and ordered structures (Dove, 2001). 
When the energies of these structures are calculated with force-field methods, the necessary statistics can 
be achieved by varying the cation distribution and by picking up the sufficient number of structures at 
random. A large number of such structures do not create a problem, as the energy minimization of each of 
the structures can be performed fast. On the contrary, when ab initio approaches are used, the number of 
the sampled structures should be minimized drastically. This implies that there is a need for algorithms, 
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which permit extracting maximum of thermodynamically important information from minimum number 
of the sampled structures. 

The thermodynamic models of celadonite and muscovite were developed using 14 and 22 
configurations respectively. These configurations were selected by random search, however, care was 
taken to check that each accepted configuration differs from the previously selected ones in terms of the 
pairwise distribution. This requirement ensures that there is always a unique solution in terms of the Js. 
The other concern was to include configurations which cover a wide spectrum of energies. The energies 
of the selected configurations were thus initially calculated with a force field model and the sets showing 
significant variations in lattice energies were selected for the further quantum mechanical calculations. 
Below we demonstrate that despite the small number of the calculations the models are in good 
agreement with available experimental data.  

The cluster expansion algorithm adopted here is based on the following equation: 

Ei ≈ ½ ∑n zn PAB
(n) Jn + E0 (1) 

where zn, PAB
(n) and Jn are the coordination number, fraction of AB-type pairs and effective interactions 

for a pair of sites at the distance n. Jn corresponds to the energy of the exchange reaction AA + BB = 2AB 
between atoms A and B located at n-th distance. Ei is the energy of a given configuration and E0 is a 
constant term for a given composition, which involves contributions to the excess energy not included in 
the Jn sum. J is known as the “exchange interactions vector”. Values of J are of crucial importance in the 
following Monte Carlo simulation. A value of J is associated with each characteristic distance separating 
neighbouring atoms. 

The sign of the J value indicates type of a pair of cations which is energetically favorable. 
Negative Js indicate an ordering tendency (dissimilar pairs are favored) and positive values indicate a 
clustering tendency (similar pairs are favored). 

The values of the Js are calculated in order to reproduce the lattice energies computed with ab 
initio or with a force-field model and to predict the energies of other possible configurations, which are 
not explicitly sampled. The procedure includes counting numbers of AB-type pairs for each structure and 
finding the values of the Js via a least squares fit to the computed energies of these structures. The pairs 
are sorted by distance and thus the obtained Js describe interactions between all possible pairs of 
neighbours. Here this procedure is applied to the end-members, muscovite and celadonite, and to another 
composition that lies in the middle of the join, i.e. the ideal phengite. In this study the interaction range is 
limited by 7 Å. The least squares solution implies that the vector J is found by solving the matrix 
equation: 

J = P−1 E (2) 

where P is the matrix of the frequencies of AB pairs and E is the vector of the energies.  
When the Js are known it is easy to calculate the lattice energy of any configuration by counting 

the numbers of AB-type pairs and by multiplying these numbers by the Js. Thus it appears possible to 
permute a large number of structures in a reasonable time. The algorithm used in this study allows the 
evaluation of the lattice energy of tens of millions of structures with thousands of substituting atoms. 

The supercells adopted for the Monte Carlo simulations are typically much larger than those used 
for CASTEP or GULP calculations. The energy of the initial configuration is calculated by explicitly 
counting the numbers of AB pairs at all distances. Subsequent calculations of the energy changes during 
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the Monte Carlo simulation involve only the counting of the changes in the number of AB pairs around 
two randomly chosen atoms. This allows to greatly decrease the calculation time required at each Monte 
Carlo step and thus to perform millions of Monte Carlo steps in a few seconds. 

In order to simulate the Boltzmann distribution of the configurational states, it is necessary to 
repeat this operation millions of times by randomly swapping the atoms. The procedure is known as the 
Metropolis algorithm. A configuration is set up with either an ordered or random distribution of cations. 
In essence, a cation pair is randomly selected, and the position of the two cations are switched. This yields 
the energy change: 

E → E + ∆E (3) 

If the energy change is negative or zero, the pair is swapped. On the other hand, if the change in 
the energy is positive, the swap is accepted with the probability: 

P(E → E + ∆E) = exp (–βΔE) (4) 

where β = 1 / (KB·T) (KB BB is Boltzmann’s constant in J/K/mol: KB = 1.6803·10  J/K; T is the 
temperature in K), ∆E is the energy variation between the two subsequent configurations. This algorithm 
moves the system to a thermodynamic equilibrium, what means that the configurational states occur with 
correct thermodynamic weighting corresponding to the given temperature. The more energetically 
unfavorable is the state, the lower is the probability that this state is sampled. The average configurational 
enthalpy is thus a function of the temperature. Usually about 10-20 million Monte Carlo steps are 
required to attain the equilibrium state for a system containing 3-6 thousand of exchangeable sites (e.g. 
Vinograd et al., 2007a). 

B

-23

Monte Carlo simulations can be also used for the calculation of thermodynamic functions such as 
the entropy and the free energy, using the method of thermodynamic integration (Warren et al. 2001).  

Muscovite end-member 

Fig. 1 - The cluster expansion of the pairwise 
effective interactions for the muscovite end-member 
as a function of the interatomic separation. 

The calculated Jn (see Fig. 1 and Table 1) 
constants have been used to predict the 
temperature dependent disorder in the 
compound. For these calculations, we have 
created a 6×6×6 unit cell containing 3456 
exchangeable atoms with periodic boundary 
conditions. Each state different in temperature 
was sampled with 20 million Monte Carlo steps. 
The last 10 million steps were used for 
calculating the average enthalpy.  

The temperature dependent properties have 
been calculated in the interval of 273-1400 K with 
a step of 25 K. Additional annealing runs have 
been performed to find the ground state. To do 
this we have fixed the initial temperature at 573 
and then decreased the temperature in small 
steps to 173 K. The resulting structure of pure 
muscovite is represented in Fig. 2. 
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Table 1 - Assigned J parameters and E0 value for muscovite. The J values are in kJ/mol of cations. 
 

 T-T   

 d(Å)  J 

 2.985  -53.119400 
 3.073  -44.172200 
 4.488  -6.026460 
 5.213  -5.614780 
 5.236  -9.579990 
 5.334  -4.448600 
 5.439  -3.994210 
 5.445  -11.750800 
 6.071  -0.184058 
 6.253  -3.783050 
 6.835  -1.127040 
 6.921  -0.589442 
 6.967  -2.514490 

 E0 = 21.709125 

 

Fig. 2 - Structure of the tetrahedral sheet of 
muscovite at the end of the ground state search 
where atoms are represented by spheres. The atom 
sizes are arbitrary scaled. Pink spheres = Si4+ ions, 
light blue spheres = Al3+ ions.  

Fig. 3 - The enthalpy of disorder predicted 
with Monte Carlo simulations. 

The enthalpy of disorder as function of the temperature is reported in Fig. 3. 
The configurational entropy reflects the effects of short-range (SRO) and long-range order (LRO).  
We observe that the ordered structure remains stable up to the temperature of about 400-450 K and 

then rapidly disorders (see Fig. 4). The development of LRO is manifested by the rapid decrease in 

147



PLINIUS n. 36, 2010 
 

entropy below 450 K. Thus our results are consistent with the common observation that muscovites and 
other layer silicates with similar Al/Si ratio have SRO, but no LRO. 

The Frankfurt MC code permits evaluation of the Long Range Order parameter (LRO) 

Qj = [ PAα – PAβ ] / [ PAα + PAβ ] (5) 

where PAα = PA(1+Q) and PAβ = PA(1−Q) are the probabilities of finding an A (i.e. Al or Si) atom in the 
nonequivalent sublattices α and β of the structure (Fig. 5). 

Fig. 5 - The temperature dependence of the 
LRO parameters QT as calculated for 
muscovite from Monte Carlo simulations. 

Fig. 4 - Configurational entropy calculated 
by thermodynamic integration. 

Nuclear Magnetic Resonance methods are sensitive to short-range aspects of a structure, and are 
often used to provide quantitative information about short-range order. The experimental data consist of a 
series of peaks in the NMR spectra. Each peak corresponds to a specific short-range configuration, and 
the intensity of the peak gives the relative probability of the particular configuration occurring in the 
crystal.  

There have been a number of 29Si NMR studies of layer silicates aimed at determining the short-
range order within the tetrahedral sheets (Herrero et al. 1987; Herrero & Sanz, 1991; Circone et al., 1991; 
Sanz et al., 2006). The NMR spectra give four peaks corresponding to the different combinations of Al/Si 
cations in the three neighbouring tetrahedral sites around each Si cation. The intensities of these peaks can 
be calculated from short-range order in the MC configurations. Specifically, in this work we calculated 
the probabilities of forming cluster of four cations with a central Si and three cations in the surrounding 
triangle in the sheets of the muscovite structure, [Si(SiSiSi)], [Si(AlSiSi)], [Si(AlAlSi)] and [Si(AlAlAl)]. 
These clusters have been actually observed in 29Si magic-angle spinning NMR experiments, so there is a 
bridge linking the MC simulations to the experimental data. 

Our calculated peaks are in very good agreement with the spectral data by Sanz et al. (2006)  
(Fig. 6), although their sample, with about the same composition of the tetrahedral sheet of muscovite, is 
phlogopite.Since the data of Sanz et al. (2006) show that the 29Si NMR intensities are mainly sensitive to 
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the Al/Si ration, but not to the types of octahedral or interlayer cations, the observed agreement validates 
our model. 

In th

Fig. 6 - The calculated NMR spectra in function of the temperature for muscovite. It 
is possible to note the matching of our calculated data with experimental data of Sanz 
et al. (2006) with xAl = 0.25. The sample in question is relative to phlogopite. 

e previous study by Palin et al. (2001), the match between experimental data and their Monte 
Carlo r

hermodynamic 
equilib

obert (2006) and 
other N

r/disorder in celadonite was also developed using a 2×1×1 of 1M supercell. 
ging 

from a

imulation has been performed with a 8×8×8 supercell multiple of the unit cell of 
musco

 model has an order/disorder transformation and the LRO permits to locate the 
ordering temperature between 850 and 875 K. 

esults was at about 2860 K. They explained this result by invoking kinetic reasons. 
Our results do suggest that the Al/Si distribution in layer silicates achieves t
rium even at temperatures typical for hydrothermal process. Moreover, our model of muscovite 

appears to be quantitative and, therefore, can be used as a one-mineral geothermometer. 
Although this conclusion seems to be consistent with the results of Sanz & R
MR studies of layer silicates, it requires further experimental and theoretical validation. 

Celadonite end-member 
The model of orde
The supercell permits identification of 5 different pairwise interactions with distances ran
bout 3 to 6 Angstroms. The Js were derived with the cluster expansion technique similar to that 

described for muscovite. 
The Monte Carlo s
vite. This supercell contains 4096 exchangeable atoms. The ground state structure of celadonite is 

an ordered structure. 
The celadonite
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Ideal phengite composition 
As we have shown, the ab initio calculations can be directly used to calculate the Js for the end-

member structures. It would seem obvious that the same can be done for any intermediate composition 
including phengite. However, this task is more complicated, because in phengite the order/disorder occurs 
on two sublattices corresponding to the tetrahedral (Al3+, Si4+) and the octahedral (Mg2+, Al3+) sheets. 
Consequently, there are more types of interactions and, thus, many configurations need to be considered 
to calculate the Js. 

The simulations of phengite were performed with a different method, which combined force-field 
and ab initio calculations. 11 structures of phengite have been optimized with CASTEP and with GULP 
using the potential set of Palin et al. (2001). 

These results have been used to derive an empirical correction factor, which was subsequently 
applied to the result of our force-field calculations on a much larger set of configurations. 

The model undergoes an order/disorder transformation at the temperature of about 225-275 K. The 
T-configurational entropy trend analysis suggests that above the order/disorder transition phengite retains 
a significant amount of SRO. 

 
CONCLUSION 

The main conclusion is that ab initio calculations at present provide a possibility to significantly 
increase accuracy in the description of the order/disorder and mixing phenomena in minerals. This in turn 
means that soon it will be possible to significantly improve accuracy of geothermometers currently used 
in petrology. 

We have shown that the results obtained based on ab initio calculated excess energies are in good 
agreement with the experiment. Specifically, we have shown that the thermodynamic properties of the 
both end-members of the muscovite-celadonite solid solution are significantly affected by order/disorder 
effects. Although LRO effects are predicted to occur at rather low temperatures, which are not relevant 
for typical parameters of crystallization of metamorphic rocks, SRO remains significant at higher 
temperatures. The configurational entropies of muscovite and celadonite differ significantly from the 
values predicted by the model of ideal mixing. 

We have seen, however, that the increased accuracy of atomistic simulation studies opens a 
possibility for the development of a new approach to the thermometry of metamorphic rocks.  

The intracrystalline distribution in layer silicates appears to be a good indicator of the temperature. 
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