

Crystallography School 2019

Organized by the Interdepartmental Centre for Crystallography (Crisdi)

The School is aimed at PhD students and graduates without registration fees.

The courses are organized in optional modules. The course enrollment is mandatory. At the end of each module, the students will receive a certificate of attendance (1 credit = 4 hours), subject to a verification. The language will be English or Italian on request.

The final program and forms for registration are published in the website www.CrisDi.unito.it.

For any further information please refer to P. Benna (piera.benna@unito.it).

FIRST WEEK 27-31 May 2019

BASIC COURSES BC1-BC6

 Lecturer: prof. P. Benna, University of Torino BC1. Introduction to Crystallography Crystalline state Elements of symmetry Point and spatial groups (examples) Direct and reciprocal lattice International tables. 	1½ CFU (6 hours)
 Lecturer: dr. A. Agostino, University of Torino BC2. Instrumentation for X-Ray Diffraction X rays sources Filters and monochromator crystals Detectors Geometries. 	1 CFU (4 hours)
 Lecturer: dr. R. Cossio, University of Torino BC3. Electron Diffraction Electron sources: conventional and FEG Magnetic lenses, aberrations and resolution of the electro Types of electron diffraction: SAED, CBED, EBSD Geometry, detectors and new instrumental developments. 	
 Lecturer: prof. A. Pavese, University of Torino BC4. X-Ray Diffraction X-rays interaction with matter Kinematic theory Ewald, Laue, Bragg The atomic scattering factor The structure factor and diffracted intensity The temperature factor. 	1 CFU (4 hours)

• Powder diffraction Principles Experimental design Sample preparation Main instrumental aberrations Peak profile function • Data analysis Qualitative analysis Data reduction Quantitative analysis. It is mandatory that students have acquired the knowledge of BC1, BC2 and BC4 courses. Lecturer: dr. D. Marabello, University of Torino **BC6. X-Ray Diffraction Methods: Single Crystal** 2¹/₂ CFU (10 hours) Definition and selection of crystals Instrumentation Determination of cell parameters Data collection Structure resolution and refinement Critical evaluation of the results • LAB – PART I • Visit to the instrumental laboratory • LAB – PART II • Practice on structure resolution in a computer laboratory. N° max = 12 students Attendance at the laboratories will be defined directly by the lecturer in agreement with the students. It is mandatory that students have acquired the knowledge of BC1, BC2 and BC4 courses. 27-31 May 2019 Aula Diagonale (Via P. Giuria 7, Torino) *Aula Informatica 3 (To Esposizioni, Corso Massimo D'Azeglio 15, Torino) Monday 27 May Tuesday 28 May Wednesday 29 May Thursday 30 May Friday 31 May 9-10 BC1 - Benna BC1 - Benna BC4 - Pavese BC6 - Marabello BC6* - Marabello BC1 - Benna 10-11 BC1 - Benna BC4 - Pavese BC6 - Marabello BC6* - Marabello 11-12 BC2 - Agostino BC2 - Agostino BC5 - Milanesio BC5 - Milanesio BC6* - Marabello 12-13 BC2 - Agostino BC2 - Agostino BC5 - Milanesio BC5 - Milanesio BC6* - Marabello

BC6 - Marabello

BC6 - Marabello

BC6 - Marabello

BC6 - Marabello

BC5 - Milanesio

BC5 - Milanesio

Lecturer: prof. M. Milanesio, University of Piemonte Orientale

BC5. X-Ray Diffraction Methods: Polycrystalline

14-15

15-16

16-17

17-18

BC3 - Cossio

BC3 - Cossio

BC1 - Benna

BC1 - Benna

BC3 - Cossio

BC3 - Cossio

BC4 - Pavese

BC4 - Pavese

BC5 - Milanesio

BC5 - Milanesio

BC5 - Milanesio

BC5 - Milanesio

SECOND WEEK 3-7 June 2019

SPECIALIZED COURSES SC1-SC6

Lecturer: dr. G. Di Nardo, University of Torino
SC1. Structural study of Biological Macromolecules2 CFU (8 hours)
 Protein crystallization: requirements and strategies Sample preparation • Protein crystallization methods and phase diagram • Screening of crystallization conditions Optimization of protein crystals: seeding and additional screening • Co-crystallization with ligands: soaking Protein X rays diffraction • Cryoprotectants and crystals preparation • Sample mounting Structural solving methods • Molecular replacement • Anomalous diffraction and isomorphous replacement. <i>t is mandatory that students have acquired the knowledge of the BC6 course.</i>
Lecturer: prof. F. Cámara, University of Milano
SC2. In situ non-ambient conditions by Single Crystal XR Diffraction 2 CFU (8 hours)
 <u>High Temperature</u> • Heating devices, mounting of the crystal and temperature calibration • Effects of temperature • Cell parameters and thermal expansion (strain ellipsoid, systematic and predictive equations) • Structures (thermal ellipsoid, corrections due to thermal motion) <u>High Pressure</u> • Background & technical problems • Cell parameters & equations of state EoS (tools and methods, basic aspects of the EoS, examples) • Structures (tools and methods, examples) <u>Examples of distortive phase transitions studied by in-situ SCXRD</u> • Expansion of Landau (spontaneous strain, order parameter, coupling elastic energy and order parameters). <i>it is mandatory that students have acquired the knowledge of the BC5 and BC6 courses.</i>
Lecturer: prof. A. Ferrari, University of Torino
SC3. Solid State properties: Modelization 2 CFU (8 hours) • Introduction to the "CRYSTAL" code • Dielectric and electronic properties in solids • Fundamental equations • Simulation of XRD spectra • Study cases. • Study cases. *t is mandatory that students have completed the BC1 and BC4 courses.
Lecturer: prof. R. Giustetto, University of Torino
 6C4. Causes of colour in Minerals Crystal Field theory (in octahedron and tetrahedron); Jahn-Teller effect Intervalence charge transitions, transitions between valence orbitals and conduction band Colour centres; artificial procedures to colour minerals and gems Iridescence, luminescence and fluorescence.
Lecturer: dr. N. Curetti, University of Torino
 SC5. Laboratory of High Pressure experiments - Diamond Anvil Cell (DAC) preparation. 1 CFU (4 hours) DAC cell: components and assembly for high pressure experiment Use of the standard-crystals for monitoring the internal pressure Application of the DAC in X-Ray diffraction experiment.
 <i>Lecturer</i>: dr. F. Bertolotti, University of Insubria and To.Sca.Lab. (Como) 1 CFU (4 hours) SC6. The Debye Scattering equation: a Total Scattering approach for characterizing Nanomaterials <u>Fundamentals of the Debye Scattering Equation (DSE)</u> <u>Data collection and reduction for total scattering experiments</u> <u>Characterization of structure, microstructure and morphology of nanocrystals through the DSE</u> <u>DSE applications</u> • Modeling of structural defects in nanocrystals: theory and examples • Ligand-induced structural distortions in colloidal semiconductor nanocrystals <u>The DebUsSy program suite: an overview</u> <u>Tutorial session on the DebUsSy program suite.</u>
• <u>Tutorial session on the DebUsSy program suite.</u> It is mandatory that students have completed the BC4 and BC5 courses.

3-7 June 2018

Aula Diagonale (Via P. Giuria 7, Torino)

	Monday 3 June	Tuesday 4 June	Wednesday 5	Thursday 6 June	Friday 7 June
9-10	SC1 Di Nardo	SC1 Di Nardo	SC1 Di Nardo	SC5 Curetti	SC4 Giustetto
10-11	SC1 Di Nardo	SC1 Di Nardo	SC1 Di Nardo	SC5 Curetti	SC4 Giustetto
11-12	SC2 Cámara	SC2 Cámara	SC1 Di Nardo	SC5 Curetti	SC4 Giustetto
12-13	SC2 Cámara	SC2 Cámara	SC1 Di Nardo	SC5 Curetti	SC4 Giustetto
14-15	SC2 Cámara	SC2 Cámara	SC4 Giustetto	SC4 Giustetto	SC6 Bertolotti
15-16	SC2 Cámara	SC2 Cámara	SC4 Giustetto	SC4 Giustetto	SC6 Bertolotti
16-17	SC3 Ferrari	SC3 Ferrari	SC3 Ferrari	SC3 Ferrari	SC6 Bertolotti
17-18	SC3 Ferrari	SC3 Ferrari	SC3 Ferrari	SC3 Ferrari	SC6 Bertolotti
	•	•	•	•	

THIRD WEEK 10-14 June 2019

SPECIALIZED COURSES SC7-SC14

SC7. The Rietveld Method 2 CFU (8 hours) • Basic theory • Problems with the Rietveld method • Indexing • Peak-shape function (PSF) • Background • Preferred orientation and texture. It is mandatory that students have completed the BC5 course. Lecturer: dr. E. Costa, University of Torino SC8. Introduction to Crystal Growth $1\frac{1}{2}$ CFU (6 hours) • Basic of growth mechanism • Nucleation processes. • Heterogeneous and homogeneous nucleation. • Growth and equilibrium shape. • Interface and roughening. • Growth technologies • Main growth mechanism. • Melt grown. • Solution grown. • Floating zone growth. • Other methods. • Characterization of crystals • Crystal defects. • Twins. • Crystal surfaces. • Inclusions and precipitates. • Selected method of characterization. • Etching. • X-ray topography. • Optical microscopy. • Scanning electron microscopy. • Transmission electron microscopy. Lecturer: dr. L. Pastero University of Torino

SC9. Crystal Growth for beginners

- Ideal crystal vs real crystal
- · How to nucleate, grow and modify crystals in lab

Lecturer: dr. A. Agostino, University of Torino

- Surfaces and interfaces
- Surface analysis by SPM techniques.

Lecturer: prof. E. Belluso, S. Capella, University of Torino

SC10. Use of TEM-EDS for the characterization of natural or synthetic sub-micrometric Inorganic Phases

• Sample preparation

• Data acquisition • Morphology • Electron diffraction • Semi-quantitative composition • Structure

• Refinement of acquired data.

It is mandatory that students have acquired the knowledge of the BC1 and BC4 courses.

1 CFU (4 hours)

2 CFU (8 hours)

	<i>er</i> : prof. R. Arle In situ/operand	-			1	CFU (4 hours)
• High	pressure X-Ray	powder diffracti	on (cell, geometrie	es, conventional a	nd non conventional so	
	temperature X-l tu/in operando X			materials: experin	nents and data analysis.	
	•		pleted the BC5 cou	•		
Lectur	<i>er</i> : prof. M. Dap	jaggi , University	v of Milano			
	-			disorder and amo	orphous Materials from 1	n Total Scattering CFU (4 hours)
	-	•		e-properties relati	onship of complex and	disorder materials
	c theoretical need orphous 'on the g					
		•	ie it to a model (pr	actical).		
It is mo	andatory that stu	dents have comp	oleted BC4 and BC	25 courses.		
Lectur	er: prof. R. Arle	tti, University of	Torino			
	Inorganic Crys				1	CFU (4 hours)
	s of the Crystallo					
• Com	pact Packing of a clination Polyheo	Sphere Ira				
	talline Structure:					
• Polyı	morphism and Is	omorphism: exa				
			vered, Framework			
• Zeol	lites: structural fe	eatures and prope	erties.			
Lectur	er: prof. <mark>S. Bian</mark>	co, G. Ubertalli,	, M. Pavese, S. Ro	onchetti, Politecni	ico of Torino	
SC14.	X-Ray Diffract	ion applications	on Materials Stu	ıdy	2	CFU (8 hours)
• Syn	thesis, characteri	zation and applic	cation of nanostrue	ctured oxides		
• Stre	ess analysis in me prodiffraction tech	tallic materials t	by X-ray diffractio	'n		
• Non	n ambient X-ray o		hnique to understa	nd the influence o	f temperature, atmosph	ere or pressure on
	materials.					
It is mo	andatory that stu	dents have comp	pleted the BC5 cou	rse.		
			10-14	June 2019		
		А	ula Diagonale (Via P. Giuria 7.	Torino)	
	*Aula				no D'Azeglio 15, To	rino)
	Monday	Tuesday	Wednesday	Thursday 13 June		Friday
	10 June	11 June	12 June			14 June
			0.07*	DIP CHIMICA	POLITECNICO	
9-10	SC7 Agostino	SC7 Agostino	SC7* Agostino	SC12 Dapiaggi	SC14 Ronchetti et al	SC10 Belluso/Capella
10-11 11-12	SC7 Agostino SC8 Costa	SC7 Agostino SC8 Costa	SC7* Agostino SC7* Agostino	SC12 Dapiaggi SC12 Dapiaggi	SC14 Ronchetti et al SC14 Ronchetti et al	SC10 Belluso/Capella SC8 Costa
12-13	SC8 Costa	SC8 Costa	SC7* Agostino	SC12 Daplaggi SC12 Daplaggi	SC14 Ronchetti et al	SC8 Costa
14-15	SC9 Pastero	SC9 Pastero	SC11* Arletti	SC13 Arletti	SC14 Ronchetti et al	SC10 Belluso/Capella
17 ⁻¹ 1)	SC9 Pastero	SC9 Pastero	SC11* Arletti	SC13 Arletti	SC14 Ronchetti et al	SC10 Belluso/Capella
		303 1 431010				SCTO DEllaso/ Capella
15-16	1	SC10 Belluso	SC11* Arletti	SC13 Arletti	SC14 Ronchetti et al	
	SC10 Belluso SC10 Belluso	SC10 Belluso SC10 Belluso	SC11* Arletti SC11* Arletti	SC13 Arletti SC13 Arletti	SC14 Ronchetti et al SC14 Ronchetti et al	