Electron crystallography: imaging and diffraction

E. Mugnaioli (*enrico.mugnaioli@iit.it*)

Istituto Italiano di Tecnologia Center for Nanotechnology Innovation@NEST – Pisa (Italy)

Outline

- Electron crystallography: why and when
- Transmission electron microscopy (TEM)
- Electron diffraction from oriented zones
- Electron diffraction tomography (EDT)
- An example of EDT analysis
- Three applications to mineralogy and petrography
- Strengths and limits of EDT
- Some perspectives (very beam sensitive samples)

Enrico Mugnaioli

2007 PhD in Electron Crystallography at the University of Siena (*geology*)

2007-2014 Post-Doc at the University of Mainz (*physical-chemistry*)

2014-2017 PI for the National Project "Exploring the Nanoworld" at the University of Siena (*geology*)

2017-ongoing senior researcher at IIT@NEST – Pisa (*nanotechnology*)

Crystallography

UN proclaimed 2014 as the International Year of Crystallography, celebrating the centenary of Max von Laue's Nobel Prize in Physics for the discovery of X-ray scattering

Crystallography is the science that studies the **atom arrangement** in (crystalline) **solids,** i.e. how solid materials are essentially made

Macroscopic properties of materials largely depend on the atomic structure at the sub-nanometric scale

ntroduction

Visible light has a wavelength of 4000-7000 Å, atomic radius and bonds are about 1-3 Å

Nano-crystalline materials

Calcite (CaCO₃)

Aragonite (CaCO₃)

Single-crystal X-ray diffraction

Nano-crystalline materials

Vaterite (CaCO₃)

X-ray powder diffraction (XRPD)

X-ray powder diffraction (XRPD)

ntroduction

One single nano-crystal

Polyphasic materials

Single sectors of an assemble

SEM & TEM

Transmission Electron Microscope (TEM)

Introduction

603.5

eV

Accelerated electrons

TEM

- Short wavelength (~ 0.01-0.1 Å)
 - small scattering angle
 - almost flat Ewald sphere
 - many reflections excited contemporarily
- Strong (Coulomb) interaction with matter
 10³-10⁴ stronger interaction than X-rays
 - good signal/noise from nanovolumes
 - dynamical scattering
- Charged (e⁻)
 - easy to deflect and focus in a nanoprobe
 - scattered information can be recombined in images

HRTEM on nanomaterials: local structure

HRTEM on crystal boundaries

TEM imaging

HRTEM on defects of polytypes

c = 7.3 Å (O), 7.5 Å (R, L)

 $\alpha = 90^{\circ}$ (**O**), 78° (**R**), 102° (**L**), i.e. **± b/6**.

naging

EN

c = 7.3 Å (**O**), 7.5 Å (**R**, **L**) $\alpha = 90^{\circ}$ (**O**), 78^{\circ} (**R**),

102° (**L**), i.e. **± b/6**.

single layer O, L, R

double layer O = RL, L = OL, R = OR $_{23}$

Cell parameters of different polytypes

	а	b	С	α	β	γ	sciv. a	sciv. b
0	5.3	9.2	14.7	90	97	90	no +a/3	no
L	5.3	9.2	15.0	102	97	90	no +a/3	-b/6
R	5.3	9.2	15.0	78	97	90	no +a/3	+b/6
RL	5.3	9.2	14.7	90	97	90	no +a/3	+b/6 -b/6
LO	5.3	9.2	14.8	96	97	90	no +a/3	-b/6 no
OR	5.3	9.2	14.8	84	97	90	no +a/3	no +b/6

FEM imaging

FEM imaging

Simulated HRTEM

Programs for HRTEM simulation

DEFOCUS

NCEMSS JEMS CALIDRIS CERIUS free, not easy do handle commercial commercial commercial

THICKNESS

Simulated HRTEM

G.C. Capitani, M. Mellini, *Am Mineral* **90**, 991 (2005).

imaging

EM

Corrected STEM imaging

Cu Te

HRTEM for solving structures

Resolution limit of about 2.0-1.5 Å for conventional TEM Necessity of an optimal orientation Very complicate for structure with long cell parameters 2D projections - Hard to build a 3D data set

Beam damage

Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography. T. Willhammar, J. Sun, W. Wan,
P. Oleynikov, D. Zhang, X. Zou, M. Moliner, J. Gonzalez, C. Martínez, F. Rey,
A. Corma, *Nat Chem* 4, 188 (2012).

Μ

ons)

Beam damage

Who is beam sensitive?

All organics, porous materials, water-containing materials, many layered compounds...

at a certain level everything but very conductive materials

Electron imaging vs. Diffraction

Diffraction

In diffraction we miss the crystallographic phases, but we need a much milder illumination, we achieve a better resolution and it is more easy to get 3D data

Electrons Incoming radiation Sample Scattering Diffraction

Accelerated electrons

TEM

In-zone electron diffraction

- Short wavelength (~ 0.01-0.1 Å)
 - small scattering angle
 - almost flat Ewald sphere
 - many reflections excited contemporarily
- Strong (Coulomb) interaction with matter
 10³-10⁴ stronger interaction than X-rays
 - good signal/noise from nanovolumes
 - dynamical scattering
- Charged (e⁻)
 - easy to deflect and focus in a nanoprobe
 - scattered information can be recombined in images

Phase and orientation maps

Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. E.F. Rauch, J. Portillo, 33 S. Nicolopoulos, D. Bultreys, S. Rouvimov, P. Moeck, *Z. Kristallogr.* **225**, 103 (2010).

Convergent beam electron diffraction CBED ^m

Direct observation of *d***-orbital holes and Cu-Cu bonding in Cu₂O.** J. M. Zuo, M. Kim, M. O'Keeffe, J. C. H. Spence, *Nature* **401**, 49 (199).

Double-tilt acquisition of in-zone ED

In-zone electron diffraction

Conventional in-zone ED acquisition

n-zone electron diffraction
Cell parameter determination

Conventional in-zone ED acquisition

- crystal orientation: expertise, beam damage during orientation

- limited number of zones: few reflections, data from different crystals
 most of high index reflections are missing
- in-zone patterns: maximum dynamical effects, difficult to merge

Dynamic effects

Kinematic scattering

Dynamic scattering

In-zone electron diffraction

Precession electron diffraction

Courtesy of Northwestern University, USA (C.S. Own, L. Marks)

Double conical beam-rocking system for measurement of integrated electron diffraction intensities.

R. Vincent, P.A. Midgley, *Ultramicroscopy* 53, 271 (1994).

42

Precession Electron Diffraction

DigiStar by NanoMEGAS

Beam is rotating very fast avoiding full orientation of the zone

Double conical beam-rocking system for measurement of integrated electron diffraction intensities. R. Vincent, P.A. Midgley, *Ultramicroscopy* **53**, 271 (1994).

Precession Electron Diffraction

Uvarovite [001] $Ca_3Cr_2(SiO_4)_3$ Ia3d

PED

Structure solution with three-dimensional sets of precessed electron diffraction ₄₄ **intensities.** M. Gemmi, S. Nicolopoulos, *Ultramicroscopy* **107**, 483 (2007).

Structure solution by in-zone ED

Structure solution of the new titanate Li₄Ti₈Ni₃O₂₁ using precession electron diffraction. M. Gemmi, H. Klein, A. Rageau, P. Strobelb, F. Le Cras, Acta Crystallogr B 66, 60 (2010). Crystal Structure of a Lightweight Borohydride from Submicrometer Crystallites by Precession Electron Diffraction. J. Hadermann, A. Abakumov, S. Van Rompaey, T. Perkisas, Y. Filinchuk, G. Van Tendeloo, Chem Mater 24, 3401 (2012).

45

Structure solution by in-zone ED

$I_{\rm hkl} \neq c F_{\rm hkl}^2$ **Negative thermal factor Missing light atoms Difficulties in sorting the correct solution**

Direct elctron crystallographic determination of zeolite zonal structures. D.L. Dorset, C.J. Gilmore, J.L. Jorda, S. Nicolopoulos, *Ultramicroscopy* 107, 462 (2007).

Structure solution of the new titanate Li₄Ti₈Ni₃O₂₁ using precession electron diffraction. M. Gemmi, H. Klein, A. Rageau, P. Strobelb, F. Le Cras, Acta Crystallogr B 66, 60 (2010). Crystal Structure of a Lightweight Borohydride from Submicrometer Crystallites by Precession Electron Diffraction. J. Hadermann, A. Abakumov, S. Van Rompaey, T. Perkisas, Y. Filinchuk, G. Van Tendeloo, *Chem Mater* 24, 3401 (2012).

Can we use the TEM as a (primitive) single-crystal diffractometer?

Tomographic acquisition strategy

Automated electron Diffraction Tomography (ADT or EDT):

acquisition of not oriented diffraction patterns in fixed steps of 1°

- no need for crystal orientation: fast and easy acquisition
- off-zone patterns: reduction of dynamical effects
- use of the full tilt range of the microscope: improved completeness and collection of high index reflections

Towards automated diffraction tomography. Part I - Data Acquisition. U. Kolb, T. Gorelik, C. Kübel, M.T. Otten, D. Hubert, *Ultramicroscopy* 107, 507 (2007)?

Tomographic acquisition strategy

ADT is easy, fast and highly reproducible

Towards automated diffraction tomography. Part I - Data Acquisition. U. Kolb, T. Gorelik, C. Kübel, M.T. Otten, D. Hubert, *Ultramicroscopy* 107, 507 (2007)?

Zonal vs. Tomographic ED acquisition

EDT

ADT data analysis

EDT

Towards automated diffraction tomography. Part II – Cell parameter determination. U. Kolb, T. Gorelik and M.T. Otten, *Ultramicroscopy*, **108**, 763-772 (2008).

3D reconstructed diffraction volume visualization

EDT

Cell parameters & Orientation

Cell parameters

manual selection or clustering in difference vector space

Orientation matrix

correlation with crystal shape for determination of direction of growth and facets

Disorder & Symmetry

						4	*	٠	#f			
		*			7 4		<i>n</i> ,	#	\$r	f		*
			*		ø				*		ħ	
			4	47.		*			#			,
		4		<i>¶</i> /.	¢		٠			*	ŧr	*
0				19e			0	- 44 -	6	4,	0	 2
		f#			¢.			49				
		4	ų	4.	٠		÷.				*	
		÷.	ø.	4	ø		ę		41			
i.		5		. 14	٠	4	e.e		w		**	
		-	fi	*			e	4				

Disorder

0kl: k = 2n+1

Extinctions

hk0: h = 2n

Intensity integration

"Ab initio" structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. E. Mugnaioli, T. Gorelik, U. Kolb, *Ultramicroscopy* **109**, 758 (2009).

Intensity integration

Determination of the reflection position

Set an appropriate integration area

"Ab initio" structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. E. Mugnaioli, T. Gorelik, U. Kolb, *Ultramicroscopy* **109**, 758 (2009).

Excitation error

Precession Electron Diffraction

DigiStar by NanoMEGAS

Beam is rotating very fast avoiding full orientation of the zone

Double conical beam-rocking system for measurement of integrated electron diffraction intensities. R. Vincent, P.A. Midgley, *Ultramicroscopy* **53**, 271 (1994).

ADT + Precession

Test structures

	Space group	N° indep. reflections	N° indep. atoms	Volume (ų)	Resolution (Å)	Complete ness			
Inorganic materials									
Calcite CaCO ₃	R-3c	106	3	120	0.8	97%			
Semiconductor 6H-Si	C P6mm	52	6	130	0.9	100%			
$Na_2W_4O_{13}$	P-1	738	10	262	0.8	69%			
Barite BaSO ₄	Pnma	355	5	350	0.8	82%			
ZnSb		400				70%			
Layered $Na_2Ti_6O_{13}$		I _{hkl}	$\sim F_{\rm hkl}^2$			72%			
Li ₂₆ Ti ₈ Ni ₄ O ₂₁ kinematical (1-scatter) approximation						91%			
Na ₂ W ₂ O ₇	like in X-ray								
Zeolites									
Natrolite	Fdd2	719	10	2250	0.8	92%			
ZSM-5	Pnma	2288	39	5490	1.0	79%			
IM-5	Cmcm	2170	71	16380	1.2	68%			
Organics and Hybrids	;								
10-CNBA C ₂₉ NH ₁₇	P2 ₁ /c	1871	30	2000	1.0	90%			
Basolite C ₆ H ₄ CuO ₅	Fm-3m	384	7	18640	1.2	99%			

EDT

Tomographic acquisition strategy

Towards automated diffraction tomography. Part I - Data Acquisition. U. Kolb, T. Gorelik, C. Kübel, M.T. Otten, D. Hubert, *Ultramicroscopy* 107, 507 (2007)?

Data analysis

- accurate centring
- accurate tilt axis determination

Reconstruction of **3D diffraction space**

Towards automated diffraction tomography. Part II – Cell parameter determination. U. Kolb, T. Gorelik and M.T. Otten, *Ultramicroscopy* **108**, 763 (2008).

Accurate diffraction centering

Centre of the central beam or Friedel pair

Tilt axis azimuth

The tilt axis azimuth changes for different camera lengths and for different diffraction focus

EDT analysis

Tilt axis determination

Correct tilt axis

Incorrect tilt axis

If the tilt axis is wrong, in the reconstructed volume reflection rows are "bananas"

Stereographic projection of difference vectors

Diffraction volume reconstruction

analysis

3D reconstructed diffraction volume visualization

Cell determination – clustering

Hand cell picking

Automatic clustering

The three not-coplanar difference vectors close to the centre define the primitive cell (Niggli cell)

Reflection indexing

Reflection indexing

cell superimposed to the 3D reconstructed diffraction volume⁷⁰

Extinctions & Space group

Extinctions

$$\begin{array}{l} hk0: h = 2N\\ 0kl: k+l = 2N \end{array} \right\} Pn-a$$

Space group determination

3. SPACE-GROUP DETERMINATION AND DIFFRACTION SYMBOLS

Table 3.2 (cont.)

MONOCLINIC, Laue class 2/m

Unique axis b				Laue class 1 2/m 1 Point group				
Ret	flection conditions		Extinction symbol					
hki Oki hk0	401 400 001	060		2	m	2/m		
			P1-1	P121 (3)	P1m1 (6)	P1 2/m 1 (10)		
	4	*	P1211 P1a1	P1211 (4)	P1-1 (7)	$P12_1/m1(11)$		
	<i>n</i>		Plat Pl 2 /a 1		P(a)(7)	P1 2/a 1 (13)		
	ï	^	Picl		P1c1 (7)	$P1 2_1/d1(14)$ P1 2/c1(13)		
	;	L	P1.2 /c1		$P(\mathbf{c}(t))$	P1 2/c1((3)		
	h+1	^	Plat		Pln1(7)	P1 2/n 1 (13)		
	h+1	k	P1 2, /n 1		1.101.101	P12/n1(13) P12/n1(14)		
h + k	h	k	C1-1	C121 (5)	C1m1 (8)	C12/m1(12)		
$h + \hat{k}$	h.1	k	Clel		C1c1 (9)	C12/c1(15)		
k + l	1	k	A1-1	A121 (5)	A1m1 (8)	A1 2/m 1 (12)		
k+l	h,1	k	Alnl		A1 n1 (9)	A1 2/n 1 (15)		
h+k+l	h+l	k	/1-1	/121 (5)	11m1 (8)	/1 2/m 1 (12)		
h+k+l	h,1	k	11a1		11a1 (9)	/1 2/a 1 (15)		
Unique axis c				Laue class 1 1 2/m				
Ref	lection conditions		Extinction symbol	Point group				
hki 0ki h0i	hk0 h00 0k0	00/		2	m	2/m		
Intensity integration

Determination of the reflection position

Set an appropriate integration area

"Ab initio" structure solution from electron diffraction data obtained by a combination of automated diffraction tomography and precession technique. E. Mugnaioli, T. Gorelik, U. Kolb, *Ultramicroscopy* **109**, 758 (2009).

Software for data analysis

ADT3D

In-house made Matlab routines

👹 Prantiger pile contractal i apres	
[c] 201 MultimpH comparation. http://document.acs/comparation	
C Intervice entry parts both To the Design interviced in Convergence (Unsept) Design(Less start 1: Compare "FileIlbergs/Disegn(Less - entry Convergence), parts	
 And dir you wait to built An and the static of the state of the s	

analysis

PETS – by Lukas Palatinus

*.hkl file

h	k	l	Ι	$\sigma(I)$			×
-26	0	-2	2.19	1.48	1		
-26	1	-2	0.41	0.64	1		- 1
-26	1	0	2.86	1.69	1		
-26	1	2	0.82	0.91	1		
-26	2	0	14.93	3.86	1		
-26	3	-2	1.15	1.07	1		
-26	3	0	9.01	3.00	1		
-26	4	0	3.07	1.75	1		
-25	-2	-4	1.76	1.33	1		
-25	-1	-2	1.91	1.38	1		
-25	0	4	27.11	5.21	1		
-25	1	-4	0.09	0.30	1		
-25	1	0	3.25	1.80	1		
-25	1	2	0.45	0.67	1		
-25	2	-4	3.13	1.77	1		
-25	2	-2	2.79	1.67	1		
-25	2	0	3.57	1.89	1		
-25	2	2	0.36	0.60	1		
-25	3	-2	6.02	2.45	1		
-25	3	0	4.52	2.13	1		
-25	3	2	7.56	2.75	1		
-25	4	-2	4.49	2.12	1		
-25	4	0	15.28	3.91	1		
-25	5	-2	1.44	1.20	1		
							>

EDT analysis

Software for structure analysis

SIR

direct methods and simulated annealing

SHELX suite direct methods & refinement

analysis

JANA charge flipping & dynamical refinement

SIR input

The result: a Potential Map

The Potential Map is automatically interpreted in terms of atom positions

Atom positions and final model

EDT analysis

Structure solved!!

EDT analysis

Polyphasic samples: HAPy

Examples

Polyphasic samples: HAPy

86% completeness, 1.0 Å resolution

A new hydrous Al-bearing pyroxene as a water carrier in subduction zones. M. Gemmi, J. Fischer, M. Merlini, S. Poli, P. Fumagalli, E. Mugnaioli, U. Kolb, *Earth Planet Sc Lett* **310**, 422 (2011).

EDT Examples

1978. Rogova et al., *Zapiski Vsesoyuznogo Mineralogischeskogo Obshchetva*: <u>charoite is recognized as a</u> new mineral

1985. Nikishova et al., *Crystal Chemistry and Strucutre of Minerals*: <u>on the basis of XRPD charoite is</u> <u>assigned to spacegroup P2/m (β =</u>

<u>94.3°)</u>

2009. Rozhdestvenskaya et al., *Mineral. Mag.*: <u>on the basis of XRPD</u> and HRTEM a tentative charoite strucutre is proposed in spacegroup $P2_1/m \ (\beta = 96.3^{\circ})$

2009. Rozhdestvenskaya et al., *Z*. *Kristallogr*.: <u>SAED and HRTEM reveal</u> <u>the presence of different polytypes</u>⁸⁴

 $\overline{\mathbf{T}}$

[010]

EDT confirms two ordered polytypes and allows to measure their cell parameters (in 3D)

Charoite-90: a=31.96Å, b=19.64Å, c= 7.09Å, α=90.0°, **β=90.0**°, γ=90.0°

Charoite-96: a=32.11Å,
b=19.77Å, c= 7.23Å,
$$\alpha$$
=90.0°, β =95.9°, γ =90.0°

Examples

r-`

8495 total reflections2878 independent ones97% completeness1.18 Å resolution

The structure of charoite, $(K,Sr,Ba,Mn)_{15-16}(Ca,Na)_{32}[(Si_{70}(O,OH)_{180})](OH,F)4.0 * nH_2O, solved by conventional and automated electron diffraction.$ I. Rozhdestvenskaya, E. Mugnaioli, M. Czank, W. Depmeier, U. Kolb, A. Reinholdt, T. Weirich,*Mineral Mag*74, 159 (2010).

Charoite as **OD layers** shifted by $\frac{1}{4}$ c or $-\frac{1}{4}$ c Possible sequences with the maximum degree of order (MDO): **MDO1** (cha-90): $\frac{1}{4}, -\frac{1}{4}, \frac{1}{4}, -\frac{1}{4}, \dots$ & **MDO2** (cha-96): $-\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, -\frac{1}{4}, \dots$

10271 total reflections 3353 independent reflections 97% completeness 1.15 Å resolution

$$\mathbf{R}_{sym} = 22\%$$

Space group:
$$P2_1/m$$

90

Essential features of the polytypic charoite-96 structure compared to charoite-90. I. Rozhdestvenskaya, E. Mugnaioli, M. Czank, W. Depmeier, U. Kolb, S. Merlino, *Mineral Mag* 75, 2833 (2011).

Essential features of the polytypic charoite-96 structure compared to charoite-90. I. Rozhdestvenskaya, E. Mugnaioli, M. Czank, W. Depmeier, U. Kolb, S. Merlino, ₉₂ *Mineral Mag* **75**, 2833 (2011).

Garnet Codera dike pegmatite

Metamict minerals

Matamict phase from Garnet Codera dike pegmatite (Central-Western Italian Alps)

Metamict minerals

Metamict process

the structure of minerals containing radioactive elements is progressively destroyed by radiations produced by radioactive decay

Sometimes, **iso-oriented more crystalline areas of few tens of nanometers** are preserved in the mostly amorphous matrix

95

Samarskite-(Y)

Samarskite is normally associated with formula: (Y,REE,Fe,U,Th,Ca)₄(Nb,Ta,Ti)₄O₁₆

 $(Y,REE,Fe,U,Th,Ca)_3(Nb,Ta,Ti)_5O_{16}$

Samarskite-(Y)

For X-ray diffraction, sample **annealing** and **recrystallization** are necessary

When samarskite is recrystallized **in atmosphere**, **several compounds** form

When samarskite is recrystallized **in reducing conditions (H₂), an ixiolite** or **columbite** structure is obtained

EDT Examples B C E

Polymorphism of samarskite and its relationship to other structural related Nb-Ta oxides with α-PbO₂ structure. Y. Sugitani, Y. Suzuki, K. Nagashima, *Am. Mineral.* 70, 856 (1985).

Preservation of the samarskite structure in a metamict ABO4 mineral: a key to crystal structure identification. N. Tomašić, A. Gajović, M.R. Linarić, D. Su, R. Škoda, *Eur. J. Mineral.* 22, 435 (2010).

EDT on samarskite-(Y) crystalline relicts

EDT on samarskite-(Y) crystalline relicts

How small?

EDT: limits and strengths

Space group: *P*222₁ a=7.5Å, b=22.8ÅÅ, c=29.6Å 58 independent atoms

Space group: *P*-1 a~b=15Å, c=7.8Å

30 independent atoms Birkel *et al.*, *JACS* **132**, 9881 (2010)

100

Intergrown phases

Synthesis and structural characterization of Cr-bearing magnesian h-magnetite recoverable to ambient conditions. M. Koch-Müller, E. Mugnaioli, D. Rhede, S. Speziale, U. Kolb, R. Wirth, *Am Mineral* **99**, 2405 (2014).

Intergrown phases

HP Magnetite $- Fe_3O_4$

How complex?

Quasicrystal approximant Al₇₇Rh₁₅Ru₈ Space group: *Pbma* a=23.4Å, b=16.2Å, c=20.0Å 19 independent Rh/Ru, 59 independent Al Samuha *et al.*, *Acta Cryst B* **70**, 999 (2014)

Charoite-90

Space group: $P2_1/m$ a=32.0Å, b=19.6Å, c=7.1Å, β =90.0° 36 independent Si/Ca/Na/K/Sr 54 independent O Rozhdestvenskaya *et al.*, *Mineral Mag* **74**, 159 (2010)

Inorganic zeolites

ZSM-5

Space group: *Pnma* a=20.1Å, b=19.9Å, c=13.4Å 12 independent Si/Al, 27 independent O Mugnaioli & Kolb, *Microp Mesop Mat* **166**, 93 (2013)

ITQ-43

Space group: *Cmmm* a=26.1Å, b=41.9Å, c=12.8Å 11 independent Si/Ge, 28 independent O Jiang *et al.*, *Science* **333**, 1131 (2011)

IM-17

Space group: *Amm*2 a=12.7Å, b=22.2Å, c=39.1Å 24 independent Si, 60 independent O Lorgouilloux *et al.*, *RSC Adv* **4**, 19440(2014)

Inorganic zeolites

ZSM-5

Space group: *Pnma* a=20.1Å, b=19.9Å, c=13.4Å 12 independent Si/Al, 27 independent O Mugnaioli & Kolb, *Microp Mesop Mat* **166**, 93 (2013)

11 indepen Jiang *et*

limits and strengths

 $I_{\rm hkl} \sim F_{\rm hkl}^2$ by direct methods

IM-17

Space group: *Amm*2 a=12.7Å, b=22.2Å, c=39.1Å 24 independent Si, 60 independent O Lorgouilloux *et al.*, *RSC Adv* **4**, 19440₁(2014)

How accurate?

Space group: C2/mCompleteness (0.8Å): 74% R_{sym} (I): 13.5%

 $R_1: 17.1\%$

Structure refinement from precession electron diffraction data. L. Palatinus, D. Jacob, P. Cuvillier, M. Klementová, W. Sinkler, L.D. Marks, *Acta Crystallogr A* **69**, 171 (2013).

Dynamical refinement

(Na,□)₅[MnO₂]₁₃ nanorods: a new tunnel structure for electrode materials determined *ab initio* and refined through a combination of electron and synchrotron diffraction data. E. Mugnaioli, M. Gemmi, M. Merlini, M. Gregorkiewitz, *Acta Crystallogr B* **72**, 893 (2016).

Dynamical refinement

Hydrogen positions in single nanocrystals revealed by electron diffraction. L. Palatinus, P. Brázda, P. Boullay, O. Perez, M. Klementová, S. Petit, V. Eigner, M. Zaarour, S. Mintova, *Science* **355**, 166 (2017).
Dynamical refinement

Natrolite

Space group: Fdd2a=18.3Å, b=18.6Å, c=6.6Å 10 independent atoms $V = 2250 \text{ Å}^3$

Complete solution *ab-initio* by charge flipping, O_{water} and Na⁺ included

Dynamical refinement

Detection of hydrogen atoms of H₂O molecule trapped into natrolite

channel

Maxima in the difference Fourier map after dynamical refinement

R(obs) = 15.05%

O-H distances: 1.1-1.3 Å

The water molecule plane is orthogonal to the Na-Na axis

Single-crystal analysis of nanodomains by electron diffraction tomography: mineralogy at the order-disorder borderline. E. Mugnaioli, M. Gemmi, *Z Kristallogr*, doi: 10.1515/zkri-2014-1805.

Structure intrinsically disordered

and strengths

limits

FDT:

The real limit: Beam sensitivity

Structural Characterization of Organics Using Manual and Automated Electron Diffraction. U. Kolb, T.E. Gorelik, E. Mugnaioli, A. Stewart, *Polym Rev* 50, 385 (2010).

Organics and ED

Beam damage reduction

Automatic routine for crystal tracking in STEM

samples

Beam sensible

Nanodiffraction

Specimen

Acquisition area shift

Liquid N₂ temperature

Electron dose rate ~ 15 e/Å²s

114

Single electron detector (MEDIPIX)

Ab initio structure determination of nanocrystals of organic pharmaceutical compounds by electron diffraction at room temperature using a Timepix quantum area direct electron detector. E. van Genderen, M.T.B. Clabbers, P.P. Das, A. Stewart, I. Nederlof, K.C. Barentsen, Q. Portillo, N.S. Pannu, S. Nicolopoulos, T. Gruene, J.P. Abrahams, *Acta Crystallogr A* **72**, 236 (2016).

Continuous (fast) acquisition

Standard CCD camera binning 4 (512x512 px)

Exposure: 0.5 s

 $Dh_{exp} = 0.14^{\circ}$

 $\mathbf{Dh}_{\mathbf{dead}} = 0.29^{\circ}$

 $Dh_{tot} = 0.43^{\circ}$

samples **Beam sensible**

E.F. Rauch, S. Nicolopoulos, J Appl Crystallogr 48, 718 (2015).

E.F. Rauch, S. Nicolopoulos, *J Appl Crystallogr* **48**, 718 (2015).

TEM at CNI@NEST – Pisa

DigiSTAR for precession electron diffraction *and* **ASTAR** for orientation mapping

MEDIPIX detector

Liquid N₂ cryo-transfer sample holder

in-column Ω energy filter

Very beam sensitive porous materials

Pharmaceutics

Proteins Lysozyme 1 μm Resolution 2.0 Å

Three-dimensional electron crystallography of protein microcrystals. D. Shi, B.L. Nannenga, M. G Iadanza, T. Gonen, *eLife* **2**, e01345 (2013).

Electron crystallography of ultrathin 3D protein crystals: Atomic model with charges. K. Yonekura, K. Kato, M. Ogasawara, M. Tomita, C. Toyoshima, *PNAS* **112**, 3368 (2015).

Proteins

Proteins

samples

sensible

Beam

Concluding remarks

- Electron crystallography (both imaging and diffraction) deliver valuable support for the characterization of nanocrystalline materials
- ... and sometimes, it is **the only option!**
- Imaging deliver information on the **'local structure'** of the material and on **grain boundary** relations and **disorder features**
- Electron diffraction (tomography) delivers more complete and higher resolution **3D structural data** and often allows to determine the atomic structure of the phases present in the sample
- The current challenge is the possibility to work with more and more **beam sensitive materials**: porous materials, very hydrated materials, organics, macromolecules
- A TEM, an expensive machine, but that can be afforded by a single University, or actually by a single Research Institute ¹²⁴

Acknowledgements

Ute Kolb, Tatiana Gorelik – Johannes Gutenberg University of Mainz

Mauro Gemmi, Arianna Lanza, Valentina Capello – Istituto Italiano di Tecnologia@NEST Pisa

Stavros Nicolopoulos – NanoMEGAS

Regione Toscana

Thank you for your attention!