

AMERING

Electrochemical properties of minerals: XAS/XRD characterization of mineral analogs used in Li-ion batteries

Gabriele Giuli

Scuola di Scienze e Tecnologie - Divisione Geologia Universita' di Camerino

1. The 'early days' of battery research

 \rightarrow Cell chemistries and working principles

2. The transition to 'host structure' batteries

 \rightarrow The "charge carrier concept"

3. Classifying 'state-of-the-art' electrode materials

a) Insertion/Intercalation-type electrode materials b) Alloying vs. conversion vs. conversion/alloying materials

5. X-ray Absorption Spectroscopy

 \rightarrow information on local structure and oxidation state

6. The case of doped LiFePO₄, ZnO, SnO₂

\rightarrow The very beginning: Volta develops the voltaic pile...

 \dots see also the Daniell cell (addition of CuSO₄ to the electrolyte)

\rightarrow What happens to the electrodes?

⇒ Electrodes are "actively" involved and Zn is continuously consumed

→ The next leap forward: Planté develops the lead-acid battery...

working principle

9-cell battery: 26 March 1860

Anode:	$Pb^0 + SO_4^{2-} \rightarrow PbSO_4 + 2 e^{-1}$
Cathode:	Pb ^{+IV} O ₂ + SO ₄ ²⁻ + 4 H ₃ O ⁺ + 2 e ⁻
	\downarrow
	Pb ^{+∥} SO₄ + 6 H₂O

\rightarrow Once again... What happens to the electrodes?

⇒ Electrodes and electrolyte are "actively" involved and in this case both – Pb and PbO₂ – are continuously consumed

→ One more famous battery technology of the 'early days'...

⇒ Also for the Leclanché cell the electrodes (and electrolyte) are "actively" involved and continuously consumed

\rightarrow 1975: The 1st step – nickel-metal hydride batteries...

⇒ Electrodes are "solely" acting as 'host structure' for the charge carrier

\rightarrow 1991: The 2nd step – lithium-ion batteries...

... replacing the H⁺ as charge carrier by Li⁺:

\rightarrow 1991: The 2nd step – lithium-ion batteries...

... replacing the H⁺ as charge carrier by Li⁺:

\rightarrow 3rd step – replacing Li⁺, for instance, by ...

... each of them with its own advantages and challenges.

Keller et al., ChemElectroChem 2016 (3) 1124-1132; Chihara et al., Chem. Commun. 2017 (53) 5208-5211; Kobayashi et al., Science 2016 (351) 1314-1317; Gschwind, Habilitation Presentation, Univ. Ulm, Germany, 2017.

Bresser et al., Energy Environ. Sci. 2016 (9) 3348-3367.

\rightarrow Some classic examples for insertion-type materials:

Bresser et al., Energy Environ. Sci. 2016 (9) 3348-3367; Molenda & Molenda, doi: 10.5772/21635; Oh et al., Adv. Mater. 2010 (22) 4842-4845.

\rightarrow Some classic examples for insertion_†type materials:

Bresser et al., Energy Environ. Sci. 2016 (9) 3348-3367; Bresser et al., J. Power Sources 2012 (219) 217-222.

\rightarrow Some classic examples for intercalation-type materials:

Bresser et al., Energy Environ. Sci. 2016 (9) 3348-3367; Kamya et al., Nature Mater. 2011 (10) 682-686.

\rightarrow Some classic examples for intercalation-type materials:

Bresser et al., Energy Environ. Sci. 2016 (9) 3348-3367; Carvalho et al., Membranes 2015 (5) 632-645.

➔ Synergetic combination of the two de-/lithiation mechanisms

→ Confirmation of the general reaction mechanism by means of in situ XRD and XAS (ESRF):

 Realization of an e⁻-conducting network within the single particle
Hindered aggregation of the alloying element nanograins (kinetics, confinement)

Ma et al., in preparation; Giuli et al., in preparation; Mueller et al., ChemElectroChem 2016 (3) 1311; Bresser et al. Energy Environ. Sci. 2016 (9) 3348.

OXIDATION STATE

information from the edge energy

OXIDATION STATE

LOCAL GEOMETRY

information from the pre-edge peak

theoretical XANES

Local geometry of substituents EXAFS-XANES Layer silicate and a garnet

STRUCTURAL RELAXATION

AMORPHOUS SAMPLES EXAFS-XANES

peptides

XAS (X-ray Absorption Spectroscopy)

XANES (X-ray Absorption Near Edge Spectroscopy)

EXAFS (Extended X-ray Absorption Fine Structure)

When the photons reach an energy equal to an absorption edge, μ increases abruptly because the photons are suddenly able to remove some more electrons.

From Mori et al., 2009. Anal. Chem., 81, 6516-6525

From Mori et al., 2009. Anal. Chem., 81, 6516-6525

From Belli et al., 1980. Solid State Comm., 35, 355-361

From Giuli et al., 2000. Am. Min, 85, 1172-1174

Fe²⁺ - Fe³⁺

Variety of: •coordination geometries •bond distances

Oxidation state - pre edge peak

Oxidation state - pre edge peak

From Giuli et al., 2011, Am. Mineral., 96, 631-636

From Giuli et al., 2011, Am. Mineral., 96, 631-636

From Romano et al., 2000, Am. Mineral., 85, 108-117

3.0

From Giuli et al., 2004, Am. Mineral., 89, 1640-1646

Air ^[4]	IV ⁵⁺ + [5]V ⁵⁺
FMQ+1 FMQ	[5] V 4+
FMQ-1	[5] V ⁴⁺ + [6]V ³⁺
IW	[6] V 3+

Site location- XANES

FIG. 1. Projection along a^* of part of the orthoferrosilite structure.

Site location- XANES

Energy (eV)

Site location- XANES

Local Geometry- EXAFS

Local Geometry- EXAFS

<Fe-O>= 1.86 ± 0.01 Å <T-O>= 1.680 ± 0.002 Å

Corundum α -Al₂O₃

Fig. 8 Mean Cr–O distances (Å) from EXAFS analysis on $Cr_xAl_{2-x}O_3$ powders. *Black dots* are experimental points deduced from this study. *Triangles* are XRD data from Finger and Hazen (1980) and from Pearson (1962)

Corundum α -Al₂O₃

Al ₂ O ₃	< A -O>=	1.912 Å
Cr_2O_3	< Cr-O >=	1.985 Å
Fe ₂ O ₃	<fe-0>=</fe-0>	2.031 Å

Universită BICAMERINO ^[4]Fe³⁺-O distance in synthetic kimzeyite garnet

 $Ca_3(Zr,Ti)_2[Fe,Al,Si]_3O_{12}$

Milton C., Ingram B.L., Blade L.V. (1961), Am. Mineral., 46, 533-548
Ito J., and Frondel C. (1967), Am. Mineral., 52, 773-781
Munno r., Rossi G., Tadini C. (1980), Am Mineral, 65, 188-191
Schingaro E., Scordari F., Capitanio F., Parogi G., Smith D.C., Mottana A. (2001), Eur. J. Mineral., 13, 749-759

^[4]Fe³⁺-O distances

Rodolicoite FePO₄

Arnold, 1986 Zeit. Krist., 177, 139-142

<Fe-O>= 1.825 Å

Tetra-Ferriphlogopite <Fe-O> = 1.86 ± 0.01 Å Giuli et al., 2001, Eur. J. Min., 13, 1099-1108

QUARTZ (Fe³⁺ + Fe⁴⁺?)
 <Fe-O> = 1.78 ± 0.02 Å Di Benedetto et al., 2010, Phys. Chem. Min., 37,283-289

Phonolitic glass

 $\langle Fe-O \rangle = 1.85 \pm 0.01 \text{ Å}$

Giuli et al., 2011, Amer. Miner., 96,

Rhyolitic glass Giuli et al., 2011, Amer. Miner. (in press) $\langle Fe-O \rangle = 1 84 + 0 01 Å$

 $a_0 = 12.6250 \pm 0.0001 \text{ Å}$

 $O_X = 0.034971$ $O_y = 0.049655$ $O_Z = 0.654231$

XANES pre-edge

$a_0 = 12.6250 \pm 0.0001 \text{ \AA}$

 $O_X = 0.053236$ $O_y = 0.048514$ $O_Z = 0.656799$

T-O =	1.845 Å
Zr-0 =	2.060 Å
< Ca-O> =	2.473 Å

T-O = 1.606 Å Zr-O = 2.179 Å <Ca-O> = 2.637 Å

^[4]Fe³⁺-O distance 1.845 ± 0.015 Å in kimzeyite garnet

Possible splitting of the O position ?

- More accurate PXRD data collection

or

- Single-crystal synthesis

How do these different structural units coexhist?

AMORPHOUS SAMPLES

Cu-peptides

CU OXIDATION STATE

Cu SITE GEOMETRY

Amorphous samples

Stability under the beam?

Cu-peptides

Cu-peptides EXAFS vs XANES

XANES<CU-N> = EXAFS<CU-N>

Also hints on local geometry (sq. coord. Non centrosymmetric)

Structure of silicate glasses

Fe role?: •Polimerisation? •Bonding? •To which units is Fe bonded?

From Dingwell et a. et al., in preparation

Structure of silicate glasses

Fe ²⁺	Fe ³⁺	
[4] <fe-o>~2.00 Å</fe-o>	[4] <fe-o>~1.85 Å</fe-o>	
[5] <fe-o>~2.07 Å</fe-o>	[5] <fe-o>~1.94 Å</fe-o>	

Structure of silicate glasses

The case of doped LiFePO₄, ZnO, SnO_2

Effect of V doping in LiFePO₄

Effect of V doping in $LiFePO_4$

Core-shell model

V K-edge XAS LiFePO₄

Fe K-edge XAS LiFePO₄

•V successfully inserted in the M2 site;

•V³⁺ significantly affects cell size, crystallinity and strain;

•V³⁺ imply Li vacancy at M1;

•V do not participates to reduction/oxidation, but greatly enhances efficiency of Fe oxidation/reduction.

Moretti et al., 2013, J. Electrochem. Soc., 160(6), A940-A949

Structure of Fe- and Co- doped ZnO as anode material for Li-ion batteries

AIMS

- Characterise <u>average</u> and <u>local</u> structure
- Build the basis for *in-situ in-operando* studies during cycling

Synthesis

- 1) Dissolving (Zn, \pm Co \pm Fe) gluconate in ultra pure water.
- 2) the 0.2M solution was added to 1.2M solution of sucrose
- 3) heated at 160° C for 15' (drying)
- 4) T increased up to 300 °C (decomposition of sucrose)
- 5) Held at 450 °C for 3 hours

XRD results

Zn0.9C00.10 Zn0.9Fe0.10 Zn0.9Fe0.10/C

XRD results

- 1) No impurities
- 2) No dopants in the interstitial sites
- 3) Effect on crystallinity and strain

a ₀ (Å)	3.2511(3)	3.2523(1)	3.2552(2)	3.2547(1)
c ₀ (Å)	5.2098 (1)	5.2095(1)	5.2043(4)	5.2045)2)
$V_o(Å^3)$	47.687 (1)	47.721(1)	47.760(5)	47.746(2)
R _F 2	3.49	3.69	4.19	4.09
R _F	1.92	1.87	2.30	2.22
Crystallite size (nm)	42	29	13	15

XANES results

EXAFS results

- 1) $\langle Zn-O \rangle = 1.98 \text{ Å in all samples};$
- 2) <Co-O> = 1.97 Å;
- 3) $\langle \text{Fe-O} \rangle = 1.93$ and 1.94 Å (much larger than 1.85-1.86 found in silicates*);
- 4) Fe oscillations are damped (possibly due to vacancies)

•Fe and Co successfully inserted in the Zn sites
•Co²⁺ only slightly affects cell size, crystallinity and strain
•Fe³⁺ greatly affects strain and crystallinity:

Possibly introducing ^{Zn}V or interstitial oxygens;

•1 vacancy (or interstitial oxygen) compensates 2 Fe sites

Possible formation of FeO₄ dimers or oligomers

Giuli et al., 2015, Inorg. Chem., 54, 9393-9400

In-situ (operando) experiments

Effect of varying the Fe content

•Fe³⁺ content greatly affects crystallinity introducing ^{Zn}V;
•1 vacancy compensates 2 Fe sites;
•Possible formation of FeO₄ dimers or oligomers;
•During initial litiation, Li enters vacant sites;
•When vacancies are filled, conversion starts.

Giuli et al., 2018, Materials., 11(1), 49

Fe- Co- and Mn-doped SnO₂ as anode material for Li-ion batteries

Work in progress

Varying decreasing rate of crystallite size suggest different oxidation states of Co, Fe, Mn
Consistent with XPS data
XAS data acquisition in progress

\rightarrow Can we generalize the findings for TM-doped ZnO and SnO₂?

→ Improved cycling stability by using Co as dopant also in case of ZnO
 → Higher electronic conductivity (1.8 vs. 1.2 x10⁷ S m⁻¹) as reason for this enhanced cycling?
 ... though it is relatively low for Mn (0.07 x10⁷ S m⁻¹) ...

→ Besides, the diffusivity appears to play an important role ...

... to be further investigated.

Bresser et al., Chem. Mater. 2013 (25) 4977; Bresser et al. Energy Environ. Sci. 2016 (9) 3348.

•The introduction of the 'charge carrier concept' has enabled the rapid evolution of portable electronic devices in the recent past;

•consequently, opened up a continuously increasing interest in enhancing the existing technologies and realizing new ones;

•New materials have been developed based on the continuously increasing fundamental understanding;

• As such "battery research" is a truly interdisciplinary field, including electrochemistry, physical chemistry, in-/organic chemistry, materials science, physics, and potentially also Mineralogy (in addition to engineering).

•In depth study of crystal chemical behaviour

Both average/local structure and Oxidation state

•Defect chemistry can profoundly affect physical/chemical properties

•Apparently simple phases (ZnO) can reveal complex behaviour

•Important to combine results from different techniques

Thank you for your attention

