GNM-SIMP school "Physical properties of minerals" -Bressanone February 12-15, 2018

Raman spectroscopy in Earth Sciences

Dr. Simona Ferrando

ALMA UNIVERSITAS TAURINENSIS

Outline

- Basics:
 - Basics in Raman spectroscopy
 - A typical μ -Raman spectrometer
- Applications:
 - Minerals
 - Fluid inclusions
 - Glasses & melt inclusions

Basics on Raman spectroscopy

Chandrasekhara Venkata Raman Nobel Prize in Physics (1930)

A BIT OF HISTORY

1871 - Elastic light scattering theory is published by J.W. Strutt (Lord Rayleigh, 1904 Nobel prize in Physics for the discovery of argon)

1923 - Inelastic light scattering is predicted by A. Smekel

1928 - Landsberg and Mandelstam see unexpected frequency shifts in scattering from quartz

1928 – A new radiation* C V RAMAN, F.R.S.

1930 - C.V. Raman wins Nobel Prize in Physics

1961 – Invention of laser makes Raman experiments reasonable

6

DIFFUSION

When an electromagnetic radiation hits a medium, light can be:

- reflected
- transmitted after
 refraction and, in some
 cases, absorption
- cases, absorption
- re-emitted (fluorescence)scattered (diffusion)
- **Diffusion** largely occur when light interacts with objects smaller than its wavelength (e.g. molecules illuminated with visible light)
- Monochromatic light (e.g. laser) amplify the effect

Monochromatic light is scattered by matter (solid, liquid, gas) mainly in radiations maintaining incident frequency v_i (\rightarrow the molecule remains in the same energetic/quantum state; elastic scattering or "Rayleigh scattering").

Rare radiations have frequencies $v_{Raman} = v_i \pm v_{molecular}$ higher or lower than incident light (the molecule is left in a different energetic/quantum state \rightarrow inelastic scattering or "Raman effect").

 $v_{molecular}$ is a frequency due to vibrational, rotational, or electronic transitions within a molecule. The Raman effect due to **vibrational frequency** v_v is the most important.

Only a very small portion (~10⁻⁷) of the incident electromagnetic field is scattered inelastically.

ELASTIC & INELASTIC SCATTERING

Anti-Stokes scattering: inelastically scattered radiation has higher frequency than exciting line \rightarrow the molecule loses energy

Stokes scattering: inelastically scattered radiation has lower frequency than exciting line \rightarrow the molecule gains energy

In classical physics, an applied electric field (E) perturbs the electronic state of a molecule and produces a dipole moment (μ_d)

 $\mu_{d} = \alpha E$

Polarizability (α): tendency of a molecule to distort its charge distribution in presence of an electric field

The Raman effect occurs when a "Raman-active" molecule experiences a **variation of its polarizability** because of internal vibrational, rotational or electronic motions of the molecule

Consider light-matter interaction in terms of particles

Rayleigh scattering

- **Photon**: elementary particle (or "quantum") used to describe the electromagnetic field
- Phonon: a quasi-particle used to describe the vibrational modes in the matter

Stokes scattering is a more probable event

The Rayleigh scattered frequency lies at 0 cm⁻¹ and Raman frequencies are expressed as relative wavenumbers (Raman shift)

The Stokes scattering is more frequent \rightarrow more intense bands

THE RAMAN SPECTRUM

1	Set Miches	enft:	Encol	Out	manth sale
	- MICLO	SOIL	CRECI	- uuu	DULAIS

Elle Modifica Visualizza Inserisci Formato Strumenti Dati Finestra 2 Adobe PDF														
10	😂 🖬 🕻		7 12 8	08	- 🦪 🔊	· (* -)	臭 Σ 🔸	£= 2↓ 1	100%	1	Arial		10 - G	C §
	🔁 🖄 📷 🖾 🐼 🗽 🌫 🏷 🤰 🎭 🕼 🕅 Rispondi con modifiche Iermina revisione 🥊													
1	2													
1	A376 * fx 1171.912													
-	A	В	C	D	E	F	G	Н		J	K	L	М	N
365	1189.743	5618.772												
366	1188.124	5603			De			here and	dat		-			
367	1186.504	5640.5			KU	man	OU	ipu	aai	a				
368	1184.883	5636.5						-						
369	1183.263	5654.5												
370	1181.642	55/3												
3/1	1100.022	5092		<										
3/2	2 1178.401 6567 3 1176.778 5696 Raman shift:													
374														
375	the wavenumber difference													
376	a 1171 912 5753 772													
377	1170 288	1288 59935 between incident and												
378	1168.665	6222.772	associationDetween incluent and222.772scattered light (in cm ⁻¹)											
379	1167.042	6497.5												
380	1165.417	6711.772												
381	1163.793	6716.985												
382	1162.169	6573.5												
383	1160.545	6399.213												
384	1158.919	6165.5	-											
385	1157.294	6050.5												
366	1155.669	5839.713												
387	1154.041	5668		Tn	tone	ity of	f +h	a liak	.+					
388	1152.416	5717.5			16112	11 7 0.		e nyr						
389	1150.788	5619			(in)	rount		nt/c	00					
390	1149.161	5589			liu c	Journ	3, L	11/3,	UI.					
391	1147.535	5629.5			anhi	tony	unit	·)						
392	1145.906	5609				iu y	unn	J						
304	1144.279	5409.77Z												
205	1142.001	5475 773										and the second second		
14 4	+ H \Out	put /				·					117	1		

THE RAMAN SPECTRUM

Microsoft Excel - Output.xls

P376 A B C D E F G H I J K L M 5 1180 124 5603 -	-	ŵa ŵa (12		X X I B	Ba dal	Wal Ricopodi e	on modifiche	amina reside			10		2	
P376 A B C D E F G H I J K L M 5 1189.743 5618.772	-	COM COM VON		0.01		4 & Webninie	CHARGE CONTRACTOR CONTRACTOR	eropid revolu	elerer 🗗					
P3/0 V Jk A B C D E F G H J K L M 5 1188.743 5618.772 - - - - - M L M 5 1188.124 5603 -	E.	H F												
1 189 1 3 N L 100 1 188 168 179 10000 1000 10000 1000<	-	P3/6	• jx	<u> </u>	n	E	F	C	LL.	1 1	V	ar an	M	h
1108/145 5010/12 1118/124 5603 1118/124 5603 1118/124 5673 1118/124 5673 1118/124 5693 1117/1312 5763.772 1117/1312 5753.772 1116/124 5603.5 1117/1312 5753.772 1116/1256 50000 50000 50000 51171.712 5753.772 1170.728 5993.5 1116/1256 50000 50000 50000 51171.712 5753.772 1170.728 5993.5 1166.765 50000 1161.793 5716.985 1161.793 5716.985 1161.793 5716.985 1161.793 5619 1154.041 5669 1141.614 5669 1141.7535 5629.5 1142.615 5627	5	1100 7/2	EC19 773	C	0		T (0		1 0	n	L	EV9.	- 0
1186:04 6640.5 1186:04 6640.5 1181:04 6667.3 1181:022 5692 1178:014 5667.3 1181:022 5692 1178:015 56708.213 50000 60000 1171:012 5753.772 1171:012 5753.772 1171:012 5753.772 1181:024 6497.5 1161:042 6497.5 1162:047 6711.772 1163:073 6716.966 20000 20000 1163:073 6716.966 20000 20000 1165:05 6399.213 1163:073 6716.966 21162:169 6573.5 1150:045 6399.713 0 300 500 700 1140:145 5689 1150:045 6509.5 1150:045 6509.5 1150:045 6509.5 1150:045 6509.5 1140:785 5629.5 1141:75:36 5629.5 1142:79:36 5629.5 <td>2</td> <td>1188 124</td> <td>5010.772</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>	2	1188 124	5010.772										1	
1103.04 5030.5 1184.83 5636.5 1181.42 5673 1181.42 5667 1181.42 5667 1181.42 5667 1181.42 5667 1181.42 5667 1181.42 5667 1181.42 5667 1181.42 5667 1175.156 5708.213 5 50000 1175.156 5708.213 5 50000 1175.126 5737.72 1168.665 6222.772 30000 40000 2 1162.417 6399.213 30000 1160.545 6399.213 3 1160.545 1151.2416 5717.5 1152.416 5717.5 1160.788 6619 1141.15505 5629.5 1141.7535 5629.5 1142.905 5629.5 1142.905 5627	7	1186 504	5640.5	100						÷.			8	7-
1183.25 5654.5 1181.642 6573 1180.022 6592 1180.022 6592 1170.115 56567 1177.78 5696 1177.78 5696 1171.712 5753.772 50000 50000 5177.534 5759.772 5170.286 5939.5 1186.665 6222.772 1180.793 6717.772 1165.417 6711.772 1165.417 6711.772 1165.456 5392.13 1185.656 5839.713 1185.656 5839.713 1155.659 5839.713 1150.788 5619 1149.161 5658 1141.7535 5629.5 1141.7535 5629.5 1141.7535 5629.5 1142.651 5527	a	1184 883	5636.5						Output					-
1181.62 5673 1181.62 5673 1181.62 5673 1173.66 5696 1175.166 5708.213 51177.534 5759.772 50000 50000 50177.2 50000 50000 50000 50171.912 573.772 51173.534 5759.772 50000 50000 50171.912 573.772 50000 50000 50171.928 599.5 1168.666 5222.772 3 1167.042 6497.5 50000 1161.654 6399.213 3 1165.465 6399.213 50000.5 1165.669 6839.713 1000 300 500 700 900 1100 1300 1500 1700 1149.161 5569 5619 1142.96 5629.5 1142.97 5469.772 1142.97 5469.772 1142.2651 5527	à	1183 263	5654.5						N. Contraction					-
1 180.02 5692 2 1178.401 5667 3 1176.778 5696 4 1175.156 5708.213 5 1173.534 5759.772 5 1171.912 5753.772 7 1170.288 5993.5 9 1167.042 6497.5 9 1167.042 6497.5 9 1167.042 6497.5 9 1167.042 6497.5 9 1167.042 6497.5 1 1180.545 6399.213 4 1182.919 6165.5 1 1150.545 6399.213 1 10000 20000 1 10000 20000 1 1150.545 6399.213 1 1100.545 6399.213 1 1100.545 6399.213 1 10000 20000 1 1000 300 500 700 900 1100 1300 1500 1700 1 1142.915 5619 1000 3000 500 700 900 1100 1300 1500 1700 1 1142.905 5629.5 1142.95 100 100 100 100 100 100 <td>ñ</td> <td>1181 642</td> <td>5573</td> <td></td> <td>70000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	ñ	1181 642	5573		70000									
2 1178.001 5667 3 1176.778 5696 4 1175.156 5708.213 5 1173.534 5759.772 5 1173.534 5759.772 7 1170.288 5993.5 8 1188.665 6222.777 9 1167.042 6497.5 0 1165.417 6711.772 1 1163.793 6716.965 2 1162.169 6573.5 3 1160.545 6399.213 1 1155.669 5639.713 7 1155.669 5639.713 1 155.669 5639.713 1 1172.916 5619 0 0 300 500 700 900 1100 1300 1500 1700 Raman shift (cm ⁻¹) 1 1142.795 5469.772 1 1142.905 5609 1 1142.979 5469.772 1 1142.979 5469.772	1	1180.022	5592		70000 T									-
3 1176.778 5696 4 1175.156 5708.213 5 1173.534 5759.772 6 1171.912 5753.772 7 1170.288 5993.5 8 1186.666 6222.772 9 1167.042 6497.5 0 1165.417 6711.772 1 1163.793 6716.965 2 1162.465 6399.213 4 1158.919 6165.5 5 1157.294 6050.5 5 1157.294 6050.5 5 1157.294 6050.5 5 1157.294 6050.5 5 1157.294 6050.5 5 1157.294 6050.5 5 1157.294 6050.5 5 1157.294 6050.5 5 1157.294 6050.5 1140.216 571.7 5 1141.7535 5629.5	2	1178 401	5567				I							-
4 1175.156 5708.213 5 1173.534 5759.772 6 1171.912 5753.772 7 1170.288 5993.5 9 1166.66 6222.772 9 1167.042 6497.5 0 1165.417 6711.772 1 1180.806 6222.772 9 1160.545 6399.213 4 1155.669 5839.713 0 1165.645 639.213 4 1156.668 5839.713 0 1165.659 5839.713 1 1100.0545 6399.213 1 1165.669 5839.713 0 1165.669 5839.713 1 1000 300 500 700 900 1100 1300 1500 1700 1 1149.161 5589 1142.416 5717.5 14 1142.951 5629.5 144.779 144.779 144.779 144.179 144.279 144.179 144.279 144.179 144.179 144.179 144.179 144.179 144.179	ñ	1176 778	5696		60000 -		1							-
5 1173.634 5759.772 6 1171.912 5753.772 7 1170.288 5993.5 8 1168.665 6222.772 9 1167.042 6497.5 9 1167.042 6497.5 9 1167.042 6497.5 9 1167.042 6497.5 1 1163.793 6716.985 2 1162.169 6573.5 3 1160.545 6399.213 4 1150.919 6165.5 1157.294 6050.5 5 1157.294 6050.5 5 1157.294 6050.5 5 1152.416 5717.5 9 1160.788 5619 0 1000 300 500 700 900 100 1300 1500 1700 1 1147.535 5629.5	4	1175.156	5708 213		1.0									-
6 1171.912 5753.772 7 1170.288 5993.5 8 1168.665 6222.772 9 1167.042 6497.5 0 1165.417 6711.772 1 1163.865 6399.213 1 1163.645 6399.213 1 1165.656 20000 - 1165.645 6399.213 1 1165.668 20000 - 1155.669 6839.713 7 1154.041 5668 1155.669 5639.713 7 1140.161 55689 1150.788 5619 11147.535 5629.5 1 1147.535 5629.5 1 1142.906 5609 1 1142.905 5629.5 1 1142.905 5629.5 1 1142.905 5629.5 1 1142.905 5629.5 1 1142.905 5629.5 1 1142.651 5627	5	1173.534	5759.772		50000 -									
7 1170.288 5993.5 8 1168.665 6222.772 9 1167.042 6497.5 0 1165.417 6711.772 1 1163.793 6716.986 2 1162.169 6573.5 3 1160.545 6399.213 4 1158.919 6165.5 5 1157.294 6050.5 5 1157.294 6050.5 5 1157.294 6050.5 5 1157.294 6050.5 5 1157.294 6050.5 5 1157.294 6050.5 5 1157.294 6050.5 5 1157.294 6050.5 5 1150.788 5619 0 0 300 500 700 900 1100 1300 1500 1700 9 1150.788 5619 1 147.535 5629.5 1 144.279 <	6	1171.912	5753.772		and personales									
8 1168 666 6222.772 9 9 1167.042 6497.5 9 0 1165.417 6711.772 9 1 1163.793 6716.985 9 2 1162.169 6573.5 9 3 1160.545 6339.213 9 4 1158.919 6165.5 10000 10000 1 10000 10000 0 0 10000 10000 0 1000 300 500 700 900 1100 1300 1500 1700 1 1152.416 5717.5 9 1100 300 500 700 900 1100 1300 1500 1700 1 1142.658 5619 9 9 1149.161 5589 1144.279 5469.772 9 9 1142.651 5527 9 9 1142.651 5527 9 9 9 9 9 100 100 100 100 100 100 100 100 100 100 100	7	1170.288	5993.5		40000									
9 1167.042 6497.5 0 1165.417 6711.772 1 1163.793 6716.985 2 1162.169 6673.5 3 1160.545 6399.213 4 1155.669 5839.713 7 1154.041 5668 3 1152.416 5717.5 3 1150.788 5619 0 1100 300 500 700 900 1100 1300 1500 1700 8 1152.416 5717.5 1 1147.535 5629.5 2 1145.906 5609 3 1144.279 5469.772 4 1142.651 5527	8	1168.665	6222.772	1	40000 7									
0 1165.417 6711.772 1 1163.793 6716.985 2 1162.169 6573.5 3 1160.545 6399.213 4 1158.919 6165.5 5 1157.294 6050.5 6 1155.669 5839.713 7 1154.041 5668 3 1160.5788 5619 0 0 300 500 700 900 1100 1300 1500 1700 9 1150.788 5619 5629.5	9	1167.042	6497.5				11							
1 1163.793 6716.985 2 1162.169 6573.5 3 1160.545 6399.213 4 1158.919 6165.5 5 1157.294 6050.5 6 1155.669 5839.713 7 1154.041 5668 9 1152.416 5717.5 1000 300 500 700 900 1100 1300 1500 1700 9 1150.788 5619 5629.5 1700 <	0	1165.417	6711.772	4	30000 -									
2 1162.169 6573.5 3 1160.545 6399.213 4 1158.919 6165.5 5 1157.294 6050.5 6 1155.669 5839.713 7 1154.041 5668 3 1152.416 5717.5 9 1150.788 5619 0 100 300 500 700 900 1100 1300 1500 1700 Raman shift (cm ⁻¹) 1 1147.535 5629.5 2 1145.906 5609 3 1144.279 5469.772 4 1142.651 5527	1	1163.793	6716.985				11							
3 1160.545 6399.213 4 1158.919 6165.5 5 1157.294 6050.5 6 1155.669 5839.713 7 1154.041 5668 8 1152.416 5717.5 9 1150.788 5619 0 300 500 700 900 1100 1300 1500 1700 9 1150.788 5619 5629.5 5629.5 5629.5 5629.5 5609 5609 5609 5609 5609 5609 5619 5629.5 5627	2	1162.169	6573.5		20000 -									
4 1158.919 6165.5 5 1157.294 6050.5 6 1155.669 5839.713 7 1154.041 5668 8 1152.416 5717.5 9 1150.788 5619 0 300 500 700 900 1100 1300 1500 1700 9 1150.788 5619 Raman shift (cm ⁻¹) 1149.161 5589 1144.279 5669.5 1144.279 5469.772 1144.279 5469.772 1144.279 5469.772 1144.279 1142.651 5527 1142.651 5527 1142.651 5527 1142.651 1142.6	3	1160.545	6399.213			. 8								
5 1157.294 6050.5 6 1155.669 5839.713 7 1154.041 5668 8 1152.416 5717.5 9 1150.788 5619 0 300 500 700 900 1100 1300 1500 1700 9 1150.788 5619 Raman shift (cm ⁻¹) 1100 1100 1200 1700 1 1147.535 5629.5	4	1158.919	6165.5		10000	1 11	11							
6 1155.669 5839.713 0	100	1157.294	6050.5		10000 4	110	. 11		A		10		Internet and	
7 1154.041 5668 0.4 - <	0	1155.669	5839.713		-		su ~					2049200 		
8 1152.416 5717.5 100 300 500 700 900 1100 1300 1500 1700 9 1150.788 5619 Raman shift (cm*) 0 1149.161 5589 1 1 1147.535 5629.5 1 2 1145.906 5609 1 3 1144.279 5469.772 1 4 1142.651 5527 1	0	1154.041	5668		0 +			1	5					
9 1150.788 5619 Raman shift (cm ⁻¹) 0 1149.161 5589 1 1147.535 5629.5 2 1145.906 5609 3 1144.279 5469.772 4 1142.651 5527	5 6 7		5717.5		100	30(500	700	900	1100	1300	1500	1700	
0 1149.161 5589 1 1147.535 5629.5 2 1145.906 5609 3 1144.279 5469.772 4 1142.651 5527	6 7 8	1152.416	5619						Raman shi	ft (cm ⁻¹)				
1 1147.535 5629.5 2 1145.906 5609 3 1144.279 5469.772 4 1142.651 5527	5 6 7 8 9	1152.416 1150.788												
2 1145.906 5609 3 1144.279 5469.772 4 1142.651 5527	5 6 7 8 9	1152,416 1150,788 1149,161	5589											
3 1144.279 5469.772 4 1142.651 5527	5 6 7 8 9 0 1	1152.416 1150.788 1149.161 1147.535	5589 5629.5					12		1		1		
4 1142.651 5527	5 6 7 8 9 0 11 2	1152.416 1150.788 1149.161 1147.535 1145.906	5589 5629.5 5609											
	567890128	1152,416 1150,788 1149,161 1147,535 1145,906 1144,279	5589 5629.5 5609 5469.772											

RAMAN-ACTIVE MOLECULAR VIBRATIONS

Every peak, or band, corresponds to one, or a superposition of more, **Raman-active molecular vibrations**.

Main molecular vibrations include:

- stretching (stretching of the bond) modes
- **bending** (deformation of the bond angle) modes Symmetric vibrations are usually strongly Raman-active whereas asymmetric vibrations are usually nearly Raman inactive.

Stretching frequencies are generally higher than bending frequencies.

Stretching vibrations

RAMAN-ACTIVE MOLECULAR VIBRATIONS

One of the most challenging tasks in Raman spectroscopy is the reliable assignment of observed bands to certain vibrations in the sample

Frezzotti et al. (2012) -J. Geochem. Explor., 112, 1-20

RAMAN vs IR

Complementary character: IR-active transitions are not Raman-active, and viceversa.

A typical µ-Raman spectrometer

RAMAN APPARATUS

1) EXCITATION SOURCES: LASER

Why? High power. High monochromaticy. High stability.

MONOCHROMATOR: allow to separate different wavelengths & to focalize them on the image plane of the detector

- The filter (Notch or Edge) excludes the Rayleight component The slit avoids stray light and control the bandpass
- The grating disperse the incident light separating it into its constituent components (like a prism, but works in reflection)

3) DETECTOR: PMT vs CCD

Single channel detector: photomultiplier tube (PMT)

- 😊 cheaper
- 😣 worse signal-to-noise ratio
- 😣 longer acquisition time

Multichannel detectors: Charge Coupled Device (CCD)

- 8 more expensive
- 😊 better signal-to-noise ratio
- Shorter acquisition time

4) SAMPLING SYSTEMS

Nasdala et al., (2004). EMU Notes, 6, 281-343

4) SAMPLING SYSTEMS

Confocality: selectivity along axial direction (axial resolution)

Ferrando, Rossetti

THE RAMAN MICRO-SPECTROMETER OF THE INTERDIPARTIMENTAL CENTER "SCANSETTI"

Horiba Jobin Yvon Raman micro-spectrometer LABRAM HR800

Excitation:

He-Ne laser 633 nm (20 mW) Solid state Nd laser 532 nm (up to 250 mW)

Filters: interferential and edge

Grating: 600 grooves/mm 1800 grooves/mm

Confocal microscope Olympus BX41 Objectives: 4, 10, 20, 50, 100 x (spatial resolution <1 µm)

Transmicted and refleted polarized light (with videocameras)

Automated X-Y mapping stage

Spectral resolution: 1-3 cm⁻¹ (depending on the configuration) Accuracy and precision: ≤ 1 cm⁻¹ (depending on the configuration)

Setting for macro-analyses: - objective 4x - 90° mirror/prism

He-Ne laser 633 nm

Air cooled CCD

Solid state No laser 532 nm

Toward grating and CCD

Applications

Beneficial possibilities of Raman spectroscopy...

non-destructive not special sample preparation analysis of solid, liquid and gaseous phases structural and chemical information fast measure low analytical costs water and moisture does not interfere with analysis

analyses at and under the surface of transparent media

...& of Raman microspectroscopy (CONFOCAL configuration)

in situ analyses analysis of small volumes (1x1x5 µm³)

SAMPLE TAL QUALE VS THIN SECTION

Sample preparation (distructive)

Acquisition time (for a spectrum of similar quality)

Focus problem

Other problems

Possible electrostatic charge at high magnification and interference with protective matter

Possible interference with resins

Mineral characterization

video

Main vibrational regions of minerals

MINERAL CARACTERIZATION Raman spectra interpretation

Main vibrational regions of most common minerals

PHOSPHATES
SULFATES I
CARBONATES I
++++++++++++++++++++++++++++++++++++++

Modified from Frezzotti et al. (2012) - J. Geochem. Explor., 112, 1-20

MINERAL CARACTERIZATION Raman spectra interpretation

To identify a mineral, all peaks must be numbered and be assigned to a phase by comparison with STANDARDS...

...present in literature

Tectosilicates	Main vil	brations										Ref.
Orthoclase KALSi ₃ O ₈	157 177 197	284		458 477	<u>514</u> 583		751	814	967	1035 1062	1137	[1]
Microcline KAISi ₃ O ₈	159 178 199	263 267 286		455 475	514	651	749	813		1007	1128 1142	[1]
Sanidine KAISi Os	163	284		462	514		767	813			1123	[1]
Albite NaAlSi ₁ O ₈	183	210 292		457 480	508		764	816	977	1032		[2];
Quartz SIO ₂	1.28	206 265	356	402 464 485	520	608 698		807		1066	1161	6
Coesite SIO ₂	116 151 176	204 269	326 355	427 466	521		785	815 837		1036 1065	1144 1164	6
Cristobalite SiO ₂	114	230 273 286		420			792			1075		[2]

Frezzotti et al. (2012) - J. Geochem. Explor., 112, 1-20

MINERAL CARACTERIZATION Raman spectra interpretation

...present within databases

RRUFF project

If the incident light is polarized, the polarizability of a molecular vibration may change with mineral orientation

Balangero asbestos mine (TO): 1918-1990

The exposure to fine fibrous asbestos powder is linked to diseases such as pleural mesothelioma and asbestosis.

A	MINERAL CARACTERIZATION Asbestos & other harmful fibrous minerals				
Mineral	Chemical formula	Asbestos D.L. 81/08	Verified pathogenicy	Mineral group	
Chrysotile	Mg ₃ [Si ₂ O ₅](OH) ₄	*	yes	Serpentine	
Antigorite	$Mg_{3m-3}Si_{2m}O_{5m}(OH)_{4m-6},$ m=n° of tetrahedra along an entire wavelength		under evaluation	Serpentine	

MAIN BANDS & RELATED MOLECULAR VIBRATIONS

< 650 cm⁻¹

Distinct molecular vibrations:

- Mg-OH;
- *bending* mode of SiO₄ tetrahedra;
- O-H-O bonds

650-1000 cm⁻¹

Stretching modes (symmetric and asymmetric) of Si- O_b -Si bonds (O_b =oxygen in the tetrahedral plane)

1000-1150 cm⁻¹

Stretching modes of $Si-O_{nb}$ bonds (O_{nb} =oxygen out of the tetrahedral plane)

3000-4000 cm⁻¹ Vibrational modes of OH groups

378-382

680-684

Raman imaging

Green: OH-bond in chrysotile Red: OH-bond in antigorite

Petriglieri et al. (2015) - Journal of Raman Spectroscopy, **46**, 953-958

Mineral	Chemical formula	Asbestos D.L. 81/08	Verified pathogenicy	Mineral group
Anthophyllite	(Mg) ₇ [Si ₈ O ₂₂](OH,F) ₂	*	yes	Orthoamphibole
Gedrite	(Mg) ₅ Al ₂ [Si ₆ Al ₂ O ₂₂](OH,F) ₂			Orthoamphibole
Amosite (Grunerite)	(Mg,Fe ²⁺) ₇ [Si ₈ O ₂₂](OH,F) ₂	*	yes	Clinoamphibole
Actinolite	Ca ₂ (Mg,Fe ²⁺) ₅ [Si ₈ O ₂₂](OH,F) ₂	*	yes	Clinoamphibole
Tremolite	Ca ₂ (Mg) ₅ [Si ₈ O ₂₂](OH) ₂	*	yes	Clinoamphibole
Mg-hornblende	Ca ₂ (Mg) ₄ Al[Si ₇ AlO ₂₂](OH) ₂			Clinoamphibole
Crocidolite (Riebeckite)	Na ₂ Fe ²⁺ ₃ Fe ³⁺ ₂ [Si ₈ O ₂₂](OH,F) ₂	*	yes	Clinoamphibole
Fluoro-edenite	NaCa ₂ Mg ₅ [(Si ₇ Al)O ₂₂]F ₂		yes	Clinoamphibole
Whincite	$NaCa(Mg_4AI)[Si_8O_{22}](OH,F)_2$		yes	Clinoamphibole
Richterite	(Na)NaCaMg ₅ [Si ₈ O ₂₂](OH,F) ₂		yes	Clinoamphibole

AMOSITE/GRUNERITE

MAIN BANDS & RELATED MOLECULAR VIBRATIONS

< 600 cm⁻¹

Distinct molecular vibrations:

- translational modes of metal-oxygen bonds
- \cdot rotational modes of SiO₄ tetrahedra
- O-H-O bonds

600-1150 cm⁻¹

Stretching modes (symmetric and asymmetric) of Si- O_b -Si bonds

3000-4000 cm⁻¹ Vibrational modes of OH groups

MINERAL CARACTERIZATION Sedimentology

Gypsum with filamentous fossils. The Raman identification of the minerals phases included indicates that they probably are sulfideoxidizing bacteria

Modern sulfur bacteria: presence of zero-valent sulfur globules stored within membrane-bounded vesicles

The presence of polysulfide (S_n^{-2}) may represents remnant of elemental sulfur stored by the bacteria. The other S reacted with Fe and forms pyrite Dela Pierre et al. (2015) - Geology, 42, 855-858

Figure 3. From the bottom to the top, Raman spectra of gypsum with filaments, pyrite (rectangles), pyrite with polysulfide (circle), and carbonaceous material (dotted rectangles).

Raman imaging

Green: coesite Blue: quartz Red: garnet

Groppo et al. (2016) - Eur. J. Mineral., 28, 1215-1232

MAIN CARBON PHASES

The **bandwidth** increases increasing disorder at the bond scale

First-order region

D

MINERAL CARACTERIZATION Polymorph & allotrope

0.5

0.4

0.3

0.1

0

0.2

0.6

 $R_{2 ratio} = [D1/(G+D1+D2)]$

0.7

J. Metam. Geol., 20, 859-871

1450Raman shift (cm⁻¹)

1650

1850

1250

Highly crystalline graphite can precipitate from moderate-T fluids

In the Borrowdale deposit (UK), graphiteepidote intergrowths show that fully ordered graphite precipitated during the propylitic hydrothermal alteration of the volcanic host rocks at temperatures of ~500 °C at FMQ redox conditions.

Luque et al. (2007) -Geology, 37, 275-278

"...the existing Raman geothermometers appear inadequate to address graphite formation under conditions of *metastable equilibria..:"*

Foustoukos (2012) - Am. Mineral., 97, 1373-1380

MINERAL CARACTERIZATION Solid inclusions in minerals

Metamorphic mineral assemblage within zoned zircon

The identification of solid inclusions in zircon allows to characterize the metamorphic evolution of the hosting rock.

Liu et al. (2002) - Eur. J. Mineral., 14, 499-512

MINERAL CARACTERIZATION Solid inclusions in minerals

Bandshift

A compression stress reduces the distance between two, or more, atoms, leading to an increase of the vibrational frequency (shift towards higher wave numbers). A tensile stress increases the distance, leading to a decrease of the vibrational frequency (shift toward lower wave numbers)

If the deformation of the structure shows elastic behavior the shift will vary linearly with the stress amplitude. Thus the Raman band position can be used to quantify stress.

Quartz geobarometer

CaSiO₃-walstromite

MINERAL CARACTERIZATION Mineral composition

Am Mineral., 97, 1339-1347

Variation in band position is due to substitutional atoms in the crystalline lattice \rightarrow variation in chemical composition

MINERAL CARACTERIZATION

Mineral composition

MINERAL CARACTERIZATION Characterization of new minerals

Mineralogical Magazine, April 2017, Vol. 81(2), pp. 305-317

As-bearing new mineral species from Valletta mine, Maira Valley, Piedmont, Italy: III. Canosioite, Ba₂Fe³⁺(AsO₄)₂(OH), description and crystal structure

F. CÁMARA^{1,2}, E. BITTARELLO^{1,2}, M. E. CIRIOTTI³, F. NESTOLA⁴, F. RADICA⁵, F. MASSIMI⁶, C. BALESTRA⁷ AND R. BRACCO⁸

FIG. 1. Reddish-brown granules or subhedral crystals of canosioite on calcite (Field of view = 5 mm)

FIG. 3. Raman spectra of canosioite showing the 100–4000 cm⁻¹ range and the region between 100 and 1200 cm⁻¹ enlarged.

Fluid inclusions characterization

FLUID INCLUSIONS

Fluid inclusions (FI): small cavities (1-50 micron) containing tiny volumes of mobile volatile-rich phases trapped in minerals during, or after their growth \rightarrow represent remnants of palaeo-fluids present in the system.

The fluid phase may be liquid or vapor, and may include aqueous solutions, volatiles, minerals precipitated, liquid hydrocarbons.

Oglialoro et al. (2017)-Bull. Volcanol., **79**, 70

Raman microspectroscopy is a highly suitable method:

- performing in situ spot analyses of ca. 1 μm
- data on the liquid, vapor and solid phases

FLUID INCLUSIONS

Main vibrational regions in fluid inclusions

Ferrando et al. (2017) - Am. Mineral, 102, 42-60

FLUID INCLUSIONS Daughter or incidentally trapped minerals

2 000

1.500

1.000

(b)

Raman maps

Y (µm)

Mg-calcite

³Χ (μm)

10

Ferrando et al. (2017) - Am. Mineralogist, 102, 42-60

FLUID INCLUSIONS Gaseous fluids

Gaseous species: identification

FLUID INCLUSIONS Gaseous fluids

FLUID INCLUSIONS Gaseous fluids

Gaseous species: quantification

Equation to calculate the molar fraction (X) of end-member components in a gas mixture

- Same site

- Same operating conditions for all the components (e.g.: objective, acquisition time and accumulations, hole, laser power, ect.)

Data from Ferrando et al. (2010)

Gaseous species: density $\rightarrow CO_2$ Raman "densimeter"

Microthermometry: high precision technique to obtain CO₂ density from fluid inclusions

The distance between the Fermi doublet (Δ) is proportional to fluid density. The shift of the lower band is more density dependent.

Frezzotti et al (1992)-Eur. J. Mineral., 4, 1137-1153

Limit: fluid inclusion size > 3 μ m. Raman microspectroscopy spatial resolution: $1 \mu m$. losso & Bodnar (1995) Song et al. (2009) Kawakami et al. (2003) Fall et al. (2011) Yamamoto & Kagi, 3rd (2006) — Wang et al. (2011) Yamamoto & Kagi, 8th (2006) 1.0 Density (g/cm³ 0.8 Natural & 0.6 synthetic FI 0.4 0.2) = 0.211 g/cm103.0 103 5 104.0 104 5 105.0 105 5 106.0 Δ (cm⁻¹)

Lamadrid et al. (2017)-Chem. Geol., 450, 210-222

FLUID INCLUSIONS Aqueous fluids

Low polarizability of H₂O molecule

 H_2O is poorly Raman active

Use IR spectroscopy for detailed investigations

With a suitable setting (e.g., laser source), some information can be obtained

Identification of water in apparently pure gaseous FI

(2010) - GCA, 74, 3023-3039.

Frezzotti et al

Monoatomic ions dissolved

Na⁺, K⁺, Ca²⁺, & Mg²⁺ have very weak Raman spectra between 350-600 cm⁻¹

freeze the inclusions and analyze the solids below ${\rm T}_{\rm e}$

A rough identification between low salinity and high salinity aqueous fluid is possible

Semiquantitative estimation of the salt content, complementary to data from microthermometry, requires a specific calibration for each spectrometer

FLUID INCLUSIONS Aqueous fluids

Poliatomic ions & molecules dissolved

Glass & Melt inclusions characterization

GLASS - MELT INCLUSIONS

Crystalline CaFeSi₂O₆ Fe, Ca, Si, O

Rossano & Mysen, 2012

Glass of hedenbergite composition Fe, Ca, O, Si

no periodicity no special atomic planes/directions increase of disorder

Main vibrational regions in glasses

Qⁿ species

n = number of bridging oxygens

Tetrahedra entities centred on Si⁴⁺ or Al³⁺

Connectivity of the glass network (polymerization)

Raman spectroscopy gives information on:

- composition
- polymerization

McMillan (1984) - Am. Mineral., 69, 622-644

Thomas et al. (2006) - Am. Mineral., 91, 467-470

Same homogenized melt inclusions progressively brought to the surface

Inclusions analyzed under the surface avoid effect of preparation and water adsorption/diffusion

GLASS - MELT INCLUSIONS Water content in melts inclusions

Melt inclusions may contain liquid H_2O as a <0.5 μ m film, optically undetectable, at the glass/bubble interface

The composition of magmatic fluids exsolving from melts may contain higher H₂O content than previously reported

Esposito et al. (2016) - Am. Mineral., 101, 1691-1695

Density =

 0.26 g/cm^3

1600

bv

