LONG- VS. SHORT-RANGE PROPERTIES
ALONG BINARY SOLID SOLUTIONS:
THE INTERPLAY BETWEEN X-RAY DIFFRACTION
AND ABSORPTION SPECTROSCOPY

Matteo Ardit (rdtmtt@unife.it)
Department of Physics and Earth Sciences
University of Ferrara
An understanding of a crystal structure at the atomic scale is a fundamental part of the Mineralogical Sciences.

Experiments at non ambient conditions are routinely employed to investigate the crystal structure of a mineral or a synthetic analogue to interpret their structural variations by means of the so-called “comparative crystal chemistry”.

Nevertheless, in addition to the main external variables (i.e., temperature T, pressure P, and partial pressure of the atmosphere $P_{\text{H}_2\text{O}}$), chemical composition (X) – considered as an internal variable also known as "chemical" or "internal" pressure – plays a key role in determining the intrinsic features of a crystal structure.
BACKGROUND OF THIS LECTURE

Some year ago...
... project to explore oxide and silicate structures as promising ceramic pigments.

Enhanced coloring performance (+ lowering of production costs and toxicity) with respect to traditional colorants, by realizing solid solutions of known structures doped with transition metal ions (TMI e.g., Cr\(^{3+}\), Co\(^{2+}\)) hosted at 6- or 4-fold coordinated sites.

Investigated structures:

- alumoniobite \((\text{Al}_{1-x}\text{Cr}_x)\text{NbO}_4\);
- melilite \((\text{Ca},\text{Sr},\text{Ba})_2(\text{Mg}_{1-x}\text{Co}_x)\text{Si}_2\text{O}_7\) or \([(\text{Ca},\text{Sr})_2(\text{Zn}_{1-x}\text{Co}_x)\text{Si}_2\text{O}_7]\);
- perovskite \([\text{Y}(\text{Al}_{1-x}\text{Cr}_x)\text{O}_3]\);
- pyrophosphate \(\text{Na}(\text{Al}_{1-x}\text{Cr}_x)\text{P}_2\text{O}_7\);
- spinel \((\text{Zn}_{1-x}\text{Co}_x)\text{Al}_2\text{O}_4\);
- willemite \([(\text{Zn}_{1-x}\text{Co}_x)_2\text{SiO}_4]\).
Three fundamental aspects to take into account:
(I) accommodation process and the structural environment of *substituting ions* at specific crystallographic sites (along binary *solid solutions*);
(II) *long-range* structural investigation of the host structure by means of *X-ray powder diffraction*;
(III) *short-range* investigation of ions accommodated at coordination polyhedra (i.e., at *local scale*) by means of *optical spectroscopy*.

Convolution of the above mentioned aspects: comparison between mean (long-range) and local (short-range) bond lengths (in the “environment” at which the substitution takes place) provides information on the *structural relaxation*, i.e. by definition:

“*mismatch between mean (diffraction) and local (spectroscopy) bond distances of a crystal structure along a solid solution*”
SUGGESTED TEXT BOOKS AND READING

Part I

a. Overview on the chemical bonding
 a1. Ionic bond approximation: potential energy (E_p)
 a2. Coordination number
 a3. Ionic radius ratio

b. Ionic substitutions
 b1. Goldschmidt’s rules
 b2. Exceptions and Limitations
 b3. Ringwood’s rule
 b4. Other limitations
 b5. Classification of solid solutions
 b5.1. Substitutional ss
 b5.2. Interstitial ss
 b5.3. Omission ss
a. OVERVIEW ON THE CHEMICAL BONDING

Formation of a stable mineral or chemical compound:

\[
\textit{the combination of two or more atoms (ions) is energetically favored with respect to their isolated state}
\]

\textbf{Chemical bonds}: interatomic net attractive forces that hold atoms together; usually involve only the \textit{valence electrons}.

Much of the chemical bonds in minerals belong to:

(i) \textit{ionic bonds} - transferring of one or more electrons between;

(ii) \textit{covalent bonds} - sharing of electrons between ions (orbitals overlap).

Other types of bonds: \textit{metallic, Van der Waals, and hydrogen bonds}.
In a cation-anion system, the variation of the potential energy \(E_p\) is function of the interatomic distance. \(R_0\) = equilibrium interatomic distance reached at the minimum value of \(E_p\) (i.e., when \(dE/dR = 0\)).

For \(R > R_0\), \(E_p\) is determined by the (Coulomb) attraction between the opposite charges.

For \(R < R_0\), \(E_p\) is determined by the (Pauli) repulsion between the nuclei and the electron clouds.
The curve for E_p is typical of all atomic-molecular systems introductive concept of *interatomic distance* and (*lato sensu*) *ionic radius*.
a2. COORDINATION NUMBER

For a given set of ions, the most stable arrangement is the one that has the lowest E_p.

For a **maximum stabilization** of a crystal **structure**:

1. The crystal structure must be electrically neutral;
2. The cation–anion separation must be close to the interatomic distance R_0;
3. The arrangement of the ions treated as spherical balls packed as closely as possible.

 In a given 3D close packing of spheres, the number of oppositely charged nearest neighbors surrounding an ion is called its **coordination number** (CN).

(e.g., if an ion A is surrounded by 4 ions of B, $CN_A = 4$ (tetrahedral coordination); if A is surrounded by six ions of B, $CN_A = 6$ (octahedral coordination), and so on)

Generally, cations are smaller than anions, so the number of anions that can be packed around the smaller cations determines the crystal structures.
a3. IONIC RADIUS RATIO

The combined influence of cations and anions on coordination number can be predicted by the magnitudes of their radii expressed as *radius ratio* (RR).

\[RR = \frac{r_c}{r_a}, \text{ where } r_c \text{ and } r_a \text{ are ionic radius of the cation and the anion, respectively.} \]

On a model based on close packing of spheres, the *critical radius ratios* for different geometrical arrangements of spheres:

- \(RR < 0.155 \) for \(CN = 2 \);
- \(0.155 < RR < 0.225 \) for \(CN = 3 \) (trigonal coordination);
- \(0.225 < RR < 0.414 \) for \(CN = 4 \) (tetrahedral or square planar coordination);
- \(0.414 < RR < 0.732 \) for \(CN = 6 \) (octahedral coordination);
- \(0.732 < RR < 1.0 \) for \(CN = 8 \) (body-centered cubic coordination);
- \(RR > 1.0 \) for \(CN = 12 \) (edge-centered cubic coordination).

In minerals, the most common anion is \(\text{O}^{2-} \), which has an ionic radius of 1.40 Å, and the ionic radii of most common cations are between 0.60 and 1.10 Å. Thus, the RR with oxygen in minerals mostly lie between 0.43 and 0.79, suggesting that the most frequent \(CN = 6 \).
b. IONIC SUBSTITUTIONS

Most rock-forming minerals are dominantly ionic compounds. They exhibit a considerable range in chemical composition.

Deviation from their ideal chemical composition occurs due to incorporation of minor amounts of foreign ions into the lattice, primarily by ionic substitutions. The ability of different elements to occupy the same lattice position in a particular crystal structure is called **diadochy**.

Example: Mg, Fe, Mn, and Sr are diadochic in the structure of calcite (CaCO$_3$) because they can substitute for Ca in this structure.

The formation of a **solid solution** can be explained by simple rules regarding atomic size, crystal structure, valence, and electronegativity factors.

note: equivalent concepts (in this class) the formation of a solid solution (solid state miscibility) is due to the phenomenon of the diadochy (ionic substitution, vicariance).
b1. GOLDSCHMIDT’S RULES

Certain elements in minerals show a preferential association (geochemical coherence) because ions of such elements substitute easily for each other. Goldschmidt: the first to propose a series of rules governing the mutual replacement of ions in minerals (under the assumption of a pure ionic bonding).

Goldschmidt’s rules of substitution

1. If two ions have the same radius and the same charge, they would enter into solid solution in a given mineral with equal ease, in amounts roughly proportional to their abundances.

The ionic radii must not differ by more than 15%; substitution is limited or rare if the radii differ by 15% to 30%, and nonexistent if the difference is more than 30%.

Example: the common substitution of Ta$^{5+}$ (0.64 Å) for Nb$^{5+}$ (0.64 Å), Hf$^{4+}$ (0.71 Å) for Zr$^{4+}$ (0.72 Å), Ga$^{3+}$ (0.62 Å) for Al$^{3+}$ (0.54 Å), and Fe$^{2+}$ (0.78 Å) for Mg$^{2+}$ (0.72 Å) in many silicate minerals.
b1. GOLDSCHMIDT’S RULES

2. When two ions possessing the same charge but different radii compete for a particular lattice site, the ion with the smaller radius would be incorporated preferentially because it forms a stronger ionic bond.

Example: during magmatic crystallization, for example, the earlier formed olivine \([(\text{Mg, Fe})_2\text{SiO}_4]\) tends to be enriched in \(\text{Mg}^{2+} (0.72 \, \text{Å})\) relative to \(\text{Fe}^{2+} (0.78 \, \text{Å})\).

3. When two ions having similar radii but different charges compete for a particular lattice site, the ion with the higher charge would be incorporated preferentially because it forms a stronger ionic bond.

If the substituting ion has a higher charge than the ion in the lattice being substituted, it is said to be *captured* by the crystal structure; if the substituting ion has a lower charge, it is said to be *admitted* by the crystal structure.

Example: the K-feldspar structure \([\text{KAlSi}_3\text{O}_8]\) captures \(\text{Ba}^{2+} (1.35 \, \text{Å})\) for replacement of \(\text{K}^+ (1.38 \, \text{Å})\), and the biotite structure \([\text{K(Mg,Fe)}_3(\text{AlSi}_3\text{O}_{10})(\text{F,OH})_2]\) admits \(\text{Li}^+ (0.76 \, \text{Å})\) for replacement of \(\text{Mg}^{2+} (0.72 \, \text{Å})\).
b1. GOLDSCHMIDT’S RULES

4. Ions whose charges differ by one unit may substitute for one another provided electrical neutrality of the crystal is maintained by **coupled** (or **compensatory**) substitution.

Example: concurrent substitution of Na\(^+\) (1.02 Å) by Ca\(^{2+}\) (1.00 Å) and of Si\(^{4+}\) (0.26 Å) by Al\(^{3+}\) (0.47 Å) in plagioclase feldspars:

\[
\text{NaAlSi}_3\text{O}_8 + \text{Ca}^{2+} + \text{Al}^{3+} \Rightarrow \text{CaAl}_2\text{Si}_2\text{O}_8 + \text{Na}^+ + \text{Si}^{4+}
\]

In general, very little or no substitution takes place when the difference in charge on the ions is > 1, even if the size is appropriate.

Zr\(^{4+}\) (0.72 Å) does not substitute for Mg\(^{2+}\) (0.72 Å) probably because of the difficulty in achieving charge balance by compensatory substitutions.
b2. EXCEPTIONS AND LIMITATIONS

Example: similar in size and charge, Mg$^{2+}$ (0.72 Å) and Ni$^{2+}$ (0.69 Å) show only a moderately close association, and Sr$^{2+}$ (1.18 Å) and Hg$^{2+}$ (1.02 Å) show virtually no geochemical coherence.

The major limitation in the Goldschmidt’s rules is the assumption of pure ionic bonding because most minerals have a significant component of covalent bonding.
Ringwood suggested that substitution may be limited, even when the size and charge criteria are satisfied, if the competing ions have different electronegativities (El) and, therefore, form bonds of different strengths.

(note: the higher (lower) the El atomic difference between two atoms the more ionic (more covalent) will be the atomic bonding).

Example: although with the same charge e very close size, Cu$^{2+}$ (0.73 Å) rarely substitutes for Mg$^{2+}$ (0.72 Å) because of the large El difference (1.90 and 1.31, respectively).

On the contrary, despite a large difference in ionic radius, Si$^{4+}$ (0.26 Å; El = 1.9) and Ge$^{4+}$ (0.73 Å; El = 2.01) show strong geochemical coherence because of almost identical values of El.
Electronegativity values have no units.
b4. OTHER LIMITATIONS

Other factors that affect the extent of substitution are T and P at which the substitution takes place. Elevated T and lower P usually favor increased rate of substitution.

Example: HT promote greater atomic vibration and open structures, which are easier to distort locally to accommodate cations of different sizes. Thus, the concentration of minor and trace elements in minerals (e.g., Fe in sphalerite, ZnS) provides a potential means of determining the temperatures of mineral formation (geothermometry).
Almost all minerals are solid solutions (ss) to varying degrees. The range of compositions produced by ss in a given mineral is known as a solid solution series and its compositional extremes as end members.

A ss series may be continuous, in which case all intermediate members are possible (e.g., the olivine ss series with Mg$_2$SiO$_4$ and Fe$_2$SiO$_4$ as end members) or discontinuous, in which case only a restricted range of composition between the end members is found (e.g., the limited ss between ZnS and FeS).

There are three kinds of solid solutions based on the mechanism that causes their chemical composition to vary.
One or more kinds of ions are substituted by other kinds. The most common in minerals.

Example: the binary olivine series spans all intermediate compositions ranging from the forsterite Mg$_2$SiO$_4$ to the fayalite Fe$_2$SiO$_4$ end-members because of diadochic substitution of Mg$^{2+}$ by Fe$^{2+}$, which carry the same charge and have similar ionic size.

The plagioclase series characterized by progressive coupled substitution of Na$^+$ and Si$^{4+}$ by Ca$^{2+}$ and Al$^{3+}$.
Foreign ions or atoms are added to fill unoccupied interstitial crystal sites (□) that exist between ions or ion groups.

Example: the incorporation of Na\(^+\) into the structure of cristobalite (HT quartz polymorph) to compensate for the charge imbalance created by the replacement of a small amount of Si\(^{4+}\) by Al\(^{3+}\).

Minerals such as beryl (Be\(_3\)Al\(_2\)Si\(_6\)O\(_{18}\)) whose structure contains large channel-like cavities that can be occupied by relatively large monovalent cations. The charge balance being maintained by coupled substitution of Al\(^{3+}\) or Be\(^{2+}\) for Si\(^{4+}\) in tetrahedral sites:

\[
\begin{align*}
\square + \text{Si}^{4+} & \iff \text{Al}^{3+} + (\text{K}^+, \text{Rb}^+, \text{Cs}^+) \\
\iff \text{Be}^{2+} + 2(\text{K}^+, \text{Rb}^+, \text{Cs}^+)
\end{align*}
\]

This type of solid solution is very common in metals, which easily accommodate small atoms such as H, C, B, and N.
Some ion sites that are normally occupied remain vacant.

Example: the monosulfide mineral pyrrhotite. Its chemical analysis always shows more sulfur than its theoretical proportion in FeS. It is now well established that this discrepancy is due to a deficiency of Fe, not an excess of S, in the crystal structure, so that the generalized chemical formula of pyrrhotite is written as Fe$_{1-x}$S, where x varies between 0 and 0.125. The electrical neutrality in this structure is maintained by the replacement of three Fe$^{2+}$ by only two Fe$^{3+}$ leaving one site vacant:

$$3\text{Fe}^{2+} \rightarrow 2\text{Fe}^{3+} + \square.$$
Part II

c. Spectroscopy
 c1. Optical absorption spectroscopy
 c2. Optical absorption processes
 c2.1. Charge transfers
 c2.2. Band gap
 c2.3. Overtones
 c2.4. f-orbitals of U electronic transitions
 c2.5. Electron-hole centers
 c2.6. Crystal-field or ligand-field spectra
 c3. Crystal-field theory
 c3.1. TMI and CF splitting
c. SPECTROSCOPY

Although there are very many different spectroscopic methods they all work on the same basic principle:

\[\text{determination of the difference between energy levels in a material by measuring the energy} \ (E) \ \text{of the absorbed or emitted radiation when the material is excited to a higher} \ E \ \text{state, or as it decays back to the ground state.} \]

Both absorption and emission of energy are provoked when an incident radiation of the appropriate frequency induces changes in the \(E \) levels in the material, and their intensity depends on the number of molecules, atoms, or electrons moving between energy levels.
c. SPECTROSCOPY

At $T > 0$ K, a wide range of phenomena (e.g., nuclear spin resonance, e^- spin resonance, molecular rotations and vibrations, valence e^- transitions, core e^- transitions, nuclear transitions, etc.) contribute to the energy of a material, and it is usual to describe these individual phenomena as if they possessed distinct reservoirs of energy.

Each phenomenon is associated with a range of energy that varies from the ground state (zero E) to the excited states (higher E).

Electromagnetic spectrum
c1. OPTICAL ABSORPTION SPECTROSCOPY

Optical spectroscopy is concerned with qualitative and quantitative measurements of the absorption, reflection, and emission of light on single crystals or powder samples in the spectral range (26300 to 12800 cm\(^{-1}\)), i.e., from near ultra-violet, through visible, to near infrared portions of the electromagnetic spectrum, in which the transitions between electronic states occur.

Optical spectroscopy area can be broadly divided into three subareas:
(1) Absorption spectra in transmission;
(2) Reflection measurements;
(3) Emission spectroscopy.
c2. OPTICAL ABSORPTION PROCESSES

Processes which contribute to the absorption spectra of minerals in the optical spectral range can be categorized as:

c2.1. Electronic transitions which involve displacement of charge density (charge transfer, CT) from one ion to another.

- **a. CT between anion and cation.** It usually requires higher energies than CF transitions and produce absorption bands centered in the UV region.
 Example: transfer of e^{-} density from a filled O orbital to a partially occupied Fe$^{3+}$ orbital. In the case of highly oxidized ions (e.g., Fe$^{3+}$ and Cr$^{6+}$), the wing of the absorption band will extend into the visible part of the spectrum giving back a yellow-brown color.

- **b. Intervalance charge transfer (IVCT).** It involves movement of electron density between metal ions in different oxidation states. The pairs or clusters of cations typically share edges or faces of coordination polyhedra.
 Example: the deep blue of sapphire is a familiar example of color caused by this type of transition. The Fe$^{2+}$-Fe$^{3+}$ and Fe$^{2+}$-Ti$^{4+}$ intervalence interactions are common. In some meteoritic minerals, the Ti$^{3+}$-Ti$^{4+}$ interaction is also prominent.
c2. OPTICAL ABSORPTION PROCESSES

c2.2. Absorption edges result from electronic transitions between the top of a valence band and the bottom of the conduction band. Any photon with energy greater than this **band gap** will be absorbed.

These types of absorption bands are usually encountered in sulfides. **Example:** the red color of cinnabar is the result of a band gap which allows light with wavelength longer than 600 nm to pass while absorbing shorter wavelengths.

c2.3. Overtones of vibrational transitions. The most commonly encountered bands in the near-infrared are the overtones of OH and H₂O groups. Vibrational overtones are readily recognized because they have much smaller widths than electronic transitions which can occur in the same spectral region.

Example: the spectrum of beryl contains both absorption from Fe²⁺ and from the vibrational modes of H₂O molecules. The blue color of thick layers of glacial ice is the result of absorption of light by these transitions.
c2. OPTICAL ABSORPTION PROCESSES

2.4. Electronic transitions involving \textit{f-orbitals of uranium} and the \textit{rare earth elements}.

These electronic transitions involve electrons in inner orbitals that are shielded from the coordination sphere of the central metal ion. Thus, absorption bands from the trivalent REE tend to be much sharper than most of the bands from the third-row transition metals and tend to have only small shifts in wavelength with changes in the coordination number and geometry of the cation.

2.5. In many minerals, absorption of light is associated with \textit{electron-hole centers} and molecular ions produced by ionizing radiation.

The spectra of these centers can often be quite difficult to interpret. Often, color in minerals arises from the combined action of \textit{d}-orbital transitions from metal ions together with color centers from natural irradiation.
\textbf{Example}: smoky quartz, blue feldspar, green diamonds and blue calcite are examples of this process.
Electronic transitions involving electrons in the d-orbitals of ions of the first row transition elements (TMI) such as Cr^{3+}, Mn^{3+}, Co^{2+}, Fe^{2+} and Fe^{3+} that give rise to absorption in the visible and near-infrared region.

The spectra they produce are called **crystal-field (CF) spectra**.
c3. CRYSTAL-FIELD THEORY

Among the many processes which contribute to the absorption spectra of investigated materials crystal-field d–d transitions process plays a decisive role.

Pioneered by Bethe (1929) and van Vleck (1932), the crystal-field theory (CFT) is a model of chemical bonding applicable to TMI and lanthanides, and it describes the origin and consequences of interactions between the d (or f) orbitals with the electrostatic fields originating from negatively charged anions or dipolar groups coordinating the central ion.

CFT in geosciences: colour and pleochroism, interpretation of electronic structure and bonding, partitioning of TMI, evaluation of thermodynamic properties of minerals influenced by CFSE (e.g., electronic entropy or enthalpy of mixing), mantle geochemistry of transition elements (e.g., polyhedral bulk moduli from high-pressure spectra, and phase transition), detection of structural details (e.g., cation ordering, and dynamic or static Jahn-Teller distortions).
c3.2. TMI AND CF SPLITTING

TMI are characterized by incompletely filled inner *d* orbitals. First transition series (*3d* orbitals): the electronic structures are of the general form [Ar core (*1s*²*2s*²*2p*⁶*3s*²*3p*⁶*)*3d*¹ to *10* *4s*¹ or ²]. *Ions are formed when the 4s electrons (e⁻), and in some cases 3d e⁻, are removed from the metal atom.*

Example: TMI into a hypothetical field of negative charges evenly distributed on a sphere.

The increased repulsion between the ligands and the e⁻ of the 3s orbital (spherical symmetry) results simply in raising the energy level of 3s e⁻.

The threefold degenerated 3p orbitals of the metal pointing directly towards the negative charges are also raised to a higher energy level because of increased repulsion between the ligands and 3p e⁻, but remain degenerate.
c3.2. TMI AND CF SPLITTING

The main effect of ligands on the TMI arises from interaction with $3d\ e^-$. Also the $3d$ orbitals ($3d_{z^2}$, $3d_{x^2-y^2}$, $3d_{xy}$, $3d_{xz}$, $3d_{yz}$) are fivefold degenerate (i.e., they are energetically equivalent and the $d\ e^-$ have equal probability of being located in any of the five $3d$ orbitals).

from a hypothetical field of negative charges evenly distributed on a sphere to an octahedral distribution of negative charges
c3.2. **TMI AND CF SPLITTING**

The 3d orbitals can no longer remain degenerate, and they split into two groups that have different levels of energy. The energy separation between \(t_{2g} \) and \(e_g \) orbitals is termed the *crystal-field splitting* parameter (\(\Delta_o \) or \(10Dq \)).

Each \(e^- \) in a \(t_{2g} \) orbital lowers the energy of the TMI (and thus increases its stability), whereas each \(e^- \) in the \(e_g \) orbital undergo an energy increasing (it diminishes the stability). The resultant net energy, which depends on the number of \(e^- \) and how they fill the orbitals, is called *crystal field stabilization energy* (CFSE), the magnitude of which can be estimated from *absorption spectra measurements*.
c3.2. TMI AND CF SPLITTING

Filling of e^- in $3d$ orbitals of $3d$ TMI in octahedral coordination in a crystal and the resulting values of CFSE for strong-field (low-spin) and weak-field (high-spin) configurations.
Part III

d. From the Vegard’s law to the Virtual Crystal Approximation
 d1. Structural relaxation coefficient
 d2. Local distances from EAS
 d3. Local distances: XRD VS. EAS
d. FROM THE VEGARD’S LAW TO THE VCA

Goldschmidt: theory about the replacement of elements by means of simple concepts such as ion size, valence, electronegativity... ...at the same time...

Vegard: at $T = \text{const}$, the lattice constants of an alloy linearly scale with the concentration of its constituent elements.

\Rightarrow for a hypothetical binary $\text{A}_{1-x}\text{B}_x\text{O}$ solid solution the lattice constant $a(x)$ is:

$$a(x) = [(1-x) a_{\text{AO}} + (x a_{\text{BO}})]$$

a_{AO} and a_{BO} are the constant values assumed by AO and BO end-members, respectively.

The validity of the previous empirical relationship was extended to the bond lengths of binary solid solutions and it is known as "Virtual Crystal Approximation" model, VCA.
d1. STRUCTURAL RELAXATION COEFFICIENT

Numerous studies revealed that local bond distances achieved by spectroscopic techniques (*short-range*) depart from those obtained by averaging diffraction methods (deviations from the VCA model).

The mismatch between long- vs. short-range bond distances of a crystal structure along a binary join can be parameterized by the *structural relaxation coefficient* (ε):

\[
\varepsilon = \frac{\langle B-O \rangle_{local} - \langle A-O \rangle}{\langle B-O \rangle - \langle A-O \rangle}
\]

$\langle A-O \rangle$ & $\langle B-O \rangle$: mean bond lengths for AO and BO end-members (by XRD);
$\langle B-O \rangle_{local}$: local distance for the $A_{1-x}B_xO$ join derived by EAS as infinite dilution of B (*TMI*).
d1. STRUCTURAL RELAXATION COEFFICIENT

The rationale of this approach is that the relaxation coefficient can range from $\epsilon = 0$, when the VCA model is verified, to $\epsilon = 1$ in the case of the Hard Sphere (HS) model, which implies that all atoms in the solid solution retain their initial sizes. In other words, ϵ can span from absent (VCA) or full (HS) lattice relaxation.
During EAS measurements of samples belonging to isostructural solid solutions, the lengthening of polyhedral mean bond distances, caused by the replacement of a TMI for another ion, entails a gradual shift of the TMI absorption bands as well as a band absorbance increasing.

Example: in the case of octahedrally coordinated Cr$^{3+}$, the most intense bands are those attributed to:
- parity-forbidden transitions [at low energy: $\nu_1 = ^4A_{2g}(^4F) \rightarrow ^4T_{2g}(^4F) = 10Dq$] &
- spin-allowed transitions [at high energy: $\nu_2 = ^4A_{2g}(^4F) \rightarrow ^4T_{1g}(^4F)$]
d2. LOCAL DISTANCES FROM EAS

According to the Crystal Field Theory, in an oxygen based structure, the crystal field parameter $10Dq$ depends on the mean metal-oxygen bond distances:

$$10Dq = \frac{5}{3} \times q \times \langle r^4 \rangle \times \langle A_{1-x}B_x-O \rangle^{-5}$$

q: effective charge of the ligand
$\langle r^4 \rangle$: mean of the fourth power of the d-electron–core distance
$\langle A_{1-x}B_x-O \rangle$: mean distance at the metal-centred ion by XRD.

This eq. has several restrictions because it considers only one type of ligand as a point electric charge, when the $\langle B-O \rangle$ bond could be not strictly ionic. However, in the roughest way, the crystal field strength is inversely correlated with the fifth power of the mean central ion–ligand distance (→ Point Charge Approximation model):

$$10Dq = \text{const} \times \langle A_{1-x}B_x-O \rangle^{-5}$$

The local ion-oxygen distance $\langle B-O \rangle^\text{local}_x$, can be calculated for each composition of the $A_{1-x}B_xO$ solid solution by:

$$\langle B-O \rangle^\text{local}_x = \langle B-O \rangle_{x=1} \times [(10DqB)_{x=1} / (10DqB)_x]^{1/5}$$
d3. LOCAL DISTANCES: XRD VS. EAS

A_{1-x}B_xO solid solution

$\langle A-O \rangle$

$\langle B-O \rangle$

<table>
<thead>
<tr>
<th>TMI %</th>
<th>XRD [VCA]</th>
<th>EAS [VCA] vs. [HS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
d3. LOCAL DISTANCES: XRD VS. EAS

A$_{1-x}$B$_x$O solid solution

$\langle A-O \rangle$

$\langle B-O \rangle$

<table>
<thead>
<tr>
<th>TMI %</th>
<th>XRD [VCA]</th>
<th>EAS [VCA] vs. [HS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>\bigcirc</td>
<td>\bigcirc</td>
</tr>
<tr>
<td>25</td>
<td>\bigcirc</td>
<td>\bigcirc</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
d3. LOCAL DISTANCES: XRD VS. EAS

$A_{1-x}B_xO$ solid solution

$\langle A-O \rangle$

$\langle B-O \rangle$

<table>
<thead>
<tr>
<th>TMI %</th>
<th>XRD [VCA]</th>
<th>EAS [VCA] vs. [HS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
d3. LOCAL DISTANCES: XRD VS. EAS

$A_{1-x}B_xO$ solid solution

$\langle A-O \rangle$

$\langle B-O \rangle$

<table>
<thead>
<tr>
<th>TMI %</th>
<th>XRD [VCA]</th>
<th>EAS [VCA] vs. [HS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>[1/4]</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>[1/2]</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>[3/4]</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>[]</td>
<td></td>
</tr>
</tbody>
</table>
d3. LOCAL DISTANCES: XRD VS. EAS

A\textsubscript{1-x}B\textsubscript{x}O solid solution

\begin{align*}
\langle A-O \rangle & \quad \langle B-O \rangle
\end{align*}

<table>
<thead>
<tr>
<th>TMI %</th>
<th>XRD [VCA]</th>
<th>EAS [VCA] vs. [HS]</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(\circ)</td>
<td>(\circ)</td>
</tr>
<tr>
<td>25</td>
<td>(\circ)</td>
<td>(\circ)</td>
</tr>
<tr>
<td>50</td>
<td>(\circ)</td>
<td>(\circ)</td>
</tr>
<tr>
<td>75</td>
<td>(\circ)</td>
<td>(\circ)</td>
</tr>
<tr>
<td>100</td>
<td>(\circ)</td>
<td>(\circ)</td>
</tr>
</tbody>
</table>
d3. LOCAL DISTANCES: XRD VS. EAS

\[\langle B-O \rangle_x \]

\[\varepsilon = 1 \]
\[\text{(HS)} \]

\[\varepsilon = 0 \]
\[\text{(VCA)} \]

AO \quad x_{BO} \ [\text{mol}\%] \quad BO
Part IV

e. Structural relaxation examples
 e1. spinel (Zn$_{1-x}$Co$_x$)Al$_2$O$_4$
 e2. perovskite Y(Al$_{1-x}$Cr$_x$)O$_3$
 e3. melilit e Ca$_2$(Zn$_{1-x}$Co$_x$)Si$_2$O$_7$
 e4. pyrophosphate Na(Al$_{1-x}$Cr$_x$)P$_2$O$_7$

f. replacement of Cr$^{3+}$ for Al$^{3+}$ at octahedral site in compounds of mineralogical interest

ARDIT ET AL. (2012): Structural stability, cation ordering, and local relaxation along the AlNbO$_4$-$\text{Al}_{0.5}\text{Cr}_{0.5}NbO_4$ join. Am. Mineral., 97, 910.

ARDIT ET AL. (2014): Structural relaxation around Cr$^{3+}$ at the Na$(\text{Al}_{1-x}\text{Cr}_x)P_2O_7$ octahedral site: an XRPD and EAS study. Z. Kristallogr., 229, 687.

SUGGESTED READING

SUGGESTED READING

Hålenius et al. (2010): Structural relaxation around Cr\(^{3+}\) and the red-green color change in the spinel (sensu stricto)-magnesiochromite (MgAl\(_2\)O\(_4\)-MgCr\(_2\)O\(_4\)) and gahnite-zincochromite (ZnAl\(_2\)O\(_4\)-ZnCr\(_2\)O\(_4\)) solid solution series. Am. Mineral., 95, 456.

Langer (2001): A note on mean distances, R\([\text{MO}_6]\), in substituted polyhedra, \([(\text{M}_{1-x}\text{M}_x')\text{O}_6]\), in the crystal structures of oxygen based solid solutions: local versus crystal averaging methods. Z. Kristallogr., 216, 87.

Taran \textit{et al.} (2004): Local relaxation around $^{[6]}\text{Cr}^{3+}$ in synthetic pyrope–knorringite garnets, $^{[8]}\text{Mg}_3^{[6]}(\text{Al}_{1-x}\text{Cr}_x^{3+})_2^{[4]}\text{Si}_3\text{O}_{12}$, from electronic absorption spectra. \textit{Phys. Chem. Minerals}, \textbf{31}, 650.
SUGGESTED READING

e1. SPINEL
e1. SPINEL

Agreement with the Vegard's law from the linear trends of:
- unit cell parameters;
- mean bond lengths.

progressive and linear increase (although i.r.[IV]Zn2+ > i.r.[IV]Co2+)
Several absorption bands originate from different phenomena. **Note**: A strong spin-orbit coupling, expect for d^7 ions, leads to a conspicuous splitting of the Co$^{2+}$ bands.

[I] 4000–6000 cm$^{-1}$: $^4T_2(^4F)$ spin-allowed transitions is split into two bands at 4150 cm$^{-1}$ and around 4000 cm$^{-1}$) + vibronic effects.
e1. SPINEL

[II] 6000–9000 cm\(^{-1}\): the \(^4T_1(^4F) \) spin-allowed transition is split into three components (around 6700, 7200 and 7600 cm\(^{-1}\), respectively) which are associated to various vibronic sidebands
e1. SPINEL

[III] 15000–20000 cm\(^{-1}\): quadruplet \(4T_1(4P)\) transition overlaps four doublet transitions. The \(4T_1\) transition is three-fold split into the 16000–17000 cm\(^{-1}\) range, where only two bands are clearly distinguished, although the first one is strongly mixed with the \(2E\) and \(2T_1\) states. A third band at about 18500 cm\(^{-1}\) is attributed to both the \(2A_1\) and \(2T_2\) spin-allowed transitions, whose anomalous intensity stems from vibronic effects in the 17000–18000 cm\(^{-1}\) interval.
[IV] over 20000 cm\(^{-1}\): spin-forbidden transitions occur in the high energy part of spectra. Only two weak bands are discernible and attributed to \(^2T_1(2P)\) at \(~21000\) cm\(^{-1}\) and \(^2T_1(2H)\) at \(~24500\) cm\(^{-1}\).
Typical optical spectra of Co2+ in tetrahedral coordination (\(d-d\) electronic transitions):
- band absorbance increase with cobalt content;
- band energy shifted.

<table>
<thead>
<tr>
<th>nominal cobalt content (apfu)</th>
<th>gahnite – Co-aluminate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>crystal field strength, (10Dq) (cm(^{-1}))</td>
<td>4187</td>
</tr>
<tr>
<td>Racah (B_{65}) parameter (cm(^{-1}))</td>
<td>751</td>
</tr>
<tr>
<td>(\langle\text{Co–O}\rangle_{\text{local}}) (Å)</td>
<td>1.955(2)</td>
</tr>
</tbody>
</table>
Point Charge Approximation

\[10Dq = \text{const} \times \langle \text{Co–O} \rangle^{-5} \]

const: effective charge on the ligand (Q) and av. radius of the d orbital \(\langle r \rangle^4 \)

\[\langle \text{Co–O} \rangle_{\text{local}}^x = \langle \text{Co–O} \rangle_{x=1} \times [(10Dq_{\text{Co}})_{x=1} / (10Dq_{\text{Co}})]^{1/5} \]

Thus:

\[\varepsilon = (\langle \text{Co–O} \rangle_{\text{local}}^x - \langle \text{Zn–O} \rangle) \times (\langle \text{Co–O} \rangle - \langle \text{Zn–O} \rangle)^{-1} \]

Relaxation coefficient

\[\varepsilon(\lim_{x_{\text{Co}} \to 0}) = 0.47, \]

not so far from the Vegard's law

where the structural relaxation is absent (\(\varepsilon = 0 \)).
e2. PEROVSKITE

YAl\(_{1-x}\)Cr\(_x\)O\(_3\)

<table>
<thead>
<tr>
<th>Cr(^{3+}) Batch Comp.</th>
<th>Refined (x_{Cr^{3+}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.000</td>
<td>1.00</td>
</tr>
<tr>
<td>0.750</td>
<td>0.73</td>
</tr>
<tr>
<td>0.500</td>
<td>0.48</td>
</tr>
<tr>
<td>0.250</td>
<td>0.24</td>
</tr>
<tr>
<td>0.135</td>
<td>0.13</td>
</tr>
<tr>
<td>0.075</td>
<td>0.06</td>
</tr>
<tr>
<td>0.035</td>
<td>0.02</td>
</tr>
<tr>
<td>0.000</td>
<td>0.00</td>
</tr>
</tbody>
</table>

YAl\(_{0.75}\)Cr\(_{0.25}\)O\(_3\)

- Space Group: Pnma
- \(R_{wp}: 12.71\%\) and \(R_p: 8.33\%\)
- No. of Data: 4749
- No. of Reflections: 281
- No. of variables: 32
- \(N_{obs}: 2418 \rightarrow R(F^2): 6.07\%\)
- \(F_{obs}: 198.186 \rightarrow R: 2.59\%\)
e2. PEROVSKITE

Agreement with the Vegard's law from the linear trends of:
- unit cell parameters;
- mean bond lengths.
e2. PEROVSKITE

Typical optical spectra of Cr$^{3+}$ in octahedral coordination (d–d electronic transitions):
- band absorbance increase with chromium content;
- band energy shifted because of changing in crystal filed strength in the Cr–O bond length.
16000–18000 cm$^{-1}$ & 22000–24000 cm$^{-1}$: intense bands attributed to the parity-forbidden and spin-allowed transitions from the ground level $^4A_{2g}$ (4F) to $^4T_{2g}$ (4F) and $^4T_{1g}$ (4F), respectively.

13700 cm$^{-1}$, 14300 cm$^{-1}$ and 19500 cm$^{-1}$: Minor bands due to parity- and spin-forbidden transitions $^4A_{2g}$ (4F) \rightarrow 2E_g (2G), \rightarrow $^2T_{1g}$ (2G) and \rightarrow $^2T_{2g}$ (2G), respectively.
Typical optical spectra of Cr3+ in octahedral coordination (d–d electronic transitions):
- band absorbance increase with chromium content;
- band energy shifted.

<table>
<thead>
<tr>
<th>Sample</th>
<th>$10D_q$ (cm$^{-1}$)</th>
<th><Cr-O>$_{local}$ (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr35</td>
<td>17867</td>
<td>1.950</td>
</tr>
<tr>
<td>Cr75</td>
<td>17864</td>
<td>1.950</td>
</tr>
<tr>
<td>Cr135</td>
<td>17616</td>
<td>1.956</td>
</tr>
<tr>
<td>Cr250</td>
<td>17349</td>
<td>1.962</td>
</tr>
<tr>
<td>Cr500</td>
<td>16968</td>
<td>1.971</td>
</tr>
<tr>
<td>Cr750</td>
<td>16627</td>
<td>1.979</td>
</tr>
<tr>
<td>Cr1000</td>
<td>16405</td>
<td>1.984</td>
</tr>
</tbody>
</table>
e2. PEROVSKITE

Point Charge Approximation

\[10Dq = \text{const} \times \langle \text{Cr–O} \rangle^{-5} \]

\text{const}: effective charge on the ligand (Q) and av. radius of the } d \text{ orbital } \langle r \rangle^4

\[\langle \text{Cr–O} \rangle_{x}^{\text{local}} = \langle \text{Cr–O} \rangle_{x=1} \times \left[\frac{(10Dq_{\text{Cr},x=1}}{(10Dq_{\text{Cr}})} \right]^{1/5} \]

Thus:

\[\varepsilon = (\langle \text{Cr–O} \rangle_{x} - \langle \text{Al–O} \rangle) \times (\langle \text{Cr–O} \rangle - \langle \text{Al–O} \rangle)^{-1} \]

Relaxation coefficient

\[\varepsilon(\lim x_{\text{Cr}} \to 0) = 0.54, \]

between the HS and the VCA models.
e3. MELILITE

CaZnO 3CoO 7SiO2

Lambda 15405 A, L S cycle 3854

Counts

2θ deg
- Lattice parameters do not follow the Vegard's law (quadratic fitting);
- The dotted line represents a 3rd order polynomial fitting (i.e., the biparametric Margules eq.):
 \[V^{ex} = W_A x(1-x)^2 + W_B x^2(1-x), \]
 with \(W_A = -1.34(6) \text{ Å}^3 \) and \(W_B = -0.76(8) \text{ Å}^3 \).
Mean tetrahedral bond lengths scale linearly as a function of Co increasing.
e3. MELILITE

Optical density increases as a function of the Co$^{2+}$ content. Absorption bands from tetrahedral coordinated Co$^{2+}$ ($d–d$ electronic transition).

4000–5500 cm$^{-1}$: low intensity bands consequence of vibronic transitions and one of the three subbands (4500 cm$^{-1}$) caused by the splitting of the 4T_2 (4F) transition.
5500–10500 cm\(^{-1}\): the \(^4T_1\) (\(^4F\)) transition is three-fold split + some vibronic sidebands at higher energy
e3. MELILITE

14000–25000 cm\(^{-1}\): \(^4\!T_1\) (\(^4\!P\))
transition split in three subbands
+ several spin-forbidden
transitions at high energy
(\(> 18000\ cm^{-1}\))
- $10Dq$ decreases \rightarrow local bond distances elongation;
- Racah $B_{35} \sim$ const \rightarrow no change in covalence degree of tetrahedral ligands.
e3. MELILITE

Point Charge Approximation

\[10Dq = \text{const} \times \langle \text{Co–O} \rangle^{-5} \]

const: effective charge on the ligand (Q) and av. radius of the d orbital \(\langle r \rangle^4 \)

\[\langle \text{Co–O} \rangle_x^{\text{local}} = \langle \text{Co–O} \rangle_{x=1} \times [(10Dq_{\text{Co}})_{x=1} / (10Dq_{\text{Co}})]^{1/5} \]

Thus:

\[\epsilon = (\langle \text{Co–O} \rangle_x^{\text{local}} - \langle \text{Zn–O} \rangle) \times (\langle \text{Co–O} \rangle - \langle \text{Zn–O} \rangle)^{-1} \]

Relaxation coefficient

\(\epsilon(\lim x_{\text{Co}} \rightarrow 0) = 0.69 \),

far from the Vegard's law

where the structural relaxation is absent (\(\epsilon = 0 \))

closer to the HS model (\(\epsilon = 1 \)).
Na(Al_{1-x}Cr_x)P_2O_7
two strong absorbance bands attributed to the v_1 and v_2 transitions of Cr$^{3+}$ in octahedral coordination (d–d electronic transitions):

- band absorbance increase with chromium content;
- band energy tiny shifted.
e4. PYROPHOSPHATE

14,500-15,500 cm\(^{-1}\) and 21,500-22,800 cm\(^{-1}\): spin-allowed transitions \([^4T_2g(^4F): \nu_1\) and \([^4T_{1g}(^4F): \nu_2]\).

A distinctive feature in pyrophosphate spectra is the occurrence of a sort of notches: conspicuous on the \(\nu_1\) band and just appreciable on the \(\nu_2\) band. These spectral features stem from Fano antiresonance due to overlapping of spin-allowed and spin-forbidden bands.
- Lattice parameters follow the Vegard's law;
- Mean octahedral bond lengths scale linearly as a function of Cr increasing.
e4. PYROPHOSPHATE

Point Charge Approximation

\[10Dq = \text{const} \times \langle \text{Cr–O} \rangle^{-5} \]

const: effective charge on the ligand (Q) and av. radius of the \(d \) orbital \(\langle r \rangle^4 \)

\[\langle \text{Cr–O} \rangle_{x,\text{local}}^x = \langle \text{Cr–O} \rangle_{x=1} \times \left[\frac{(10Dq_{\text{Cr},x=1})}{(10Dq_{\text{Cr},x})} \right]^{1/5} \]

Thus:

\[\varepsilon = (\langle \text{Cr–O} \rangle_x - \langle \text{Al–O} \rangle) \times (\langle \text{Cr–O} \rangle - \langle \text{Al–O} \rangle)^{-1} \]

Relaxation coefficient

\(\varepsilon(\lim x_{\text{Cr}} \to 0) = 0.97 \),

very close to the HS model.
f. REPLACEMENT OF CR3+ FOR AL3+ AT OCTAHEDRAL SITE

2014. Many studies were devoted to establish the structural relaxation along substitutional solid solutions of minerals and synthetic analogues. Among these studies, the most common and well-documented assessment of structural relaxation is that derived from the octahedral replacement of chromium for aluminium, calculated by means of local distances obtained through EAS, \textit{e.g.}: garnet (Taran et al., 2004; Langer et al., 2004) perovskite (Cruciani et al., 2009; Ardit et. al., 2016) spinel (Hålenius \textit{et al.}, 2010) clinopyroxene (Taran \textit{et al.}, 2011).

No works explored the possible processes linking in a systematic way the structural features to the relaxation occurring in a given crystal structure.
f. REPLACEMENT OF CR$^{3+}$ FOR AL$^{3+}$ AT OCTAHEDRAL SITE

2012. (Urusov & Taran, 2012) from the Point Charge Approximation assumption

$$10Dq = \frac{5}{3} \times q \times \langle r^4 \rangle \times \langle Al_{1-x}Cr_x-O \rangle^{-5}$$

$$10Dq = const \times \langle Al_{1-x}Cr_x-O \rangle^{-5}$$

const: effective charge on the ligand (Q) and av. radius of the d orbital $\langle r \rangle^4$

correlated the octahedral mean bond distances of several chromium minerals and synthetic analogues with their $10Dq$

garnet (1, 4, 7)
KCr(SO$_4$)$_2$ 12H$_2$O (2)
perovskite (3)
corundum (5)
pyroxene (6 and 8)
f. REPLACEMENT OF \textit{CR}^{3+} \textit{FOR} \textit{AL}^{3+} \textit{AT OCTAHEDRAL SITE}

2012. (Urusov & Taran, 2012) Although some slight deviation, the relationship seems satisfied the previous equations. Nonetheless… whether spinel structure is taken into account…

garnet (1, 4, 7)
KCr(SO$_4$)$_2$ 12H$_2$O (2)
perovskite (3)
corundum (5)
pyroxene (6 and 8)
spinel (a and b)
f. REPLACEMENT OF CR$^{3+}$ FOR AL$^{3+}$ AT OCTAHEDRAL SITE

<table>
<thead>
<tr>
<th>Label</th>
<th>Mineral Name</th>
<th>Structure-type: Formula</th>
<th>$10Dq$ (Al$_{1-x}$Cr$_x$O$_6$)$_x$</th>
<th>Ref.</th>
<th>$10Dq$ (Al$_{1-x}$Cr$_x$O6)${x=0}$</th>
<th>$10Dq$ (Al$_{1-x}$Cr$_x$O6)${x=1}$</th>
<th>$\Delta 10Dq$</th>
</tr>
</thead>
<tbody>
<tr>
<td>YAl</td>
<td>perovskite: YAlO$_3$</td>
<td>$x = 0.02$</td>
<td>17887</td>
<td>Cruciani et al., 2009</td>
<td>17949</td>
<td>16405</td>
<td>1544</td>
</tr>
<tr>
<td>YCr</td>
<td>perovskite: YCrO$_3$</td>
<td>$x = 1$</td>
<td>16405</td>
<td>Cruciani et al., 2009</td>
<td>16405</td>
<td>1544</td>
<td>1544</td>
</tr>
<tr>
<td>Crn</td>
<td>corundum: Al$_2$O$_3$</td>
<td>$x = 0$</td>
<td>18100</td>
<td>Poole & Itzel, 1963</td>
<td>18100</td>
<td>16680</td>
<td>1420</td>
</tr>
<tr>
<td>Esk</td>
<td>corundum: Cr$_2$O$_3$</td>
<td>$x = 1$</td>
<td>16680</td>
<td>Poole & Itzel, 1963</td>
<td>16680</td>
<td>1544</td>
<td>1544</td>
</tr>
<tr>
<td>Gah</td>
<td>gahnite: ZnAl$_2$O$_4$</td>
<td>$x = 0.02$</td>
<td>18995</td>
<td>Hålenius et al., 2010</td>
<td>19005</td>
<td>17576</td>
<td>1429</td>
</tr>
<tr>
<td>ZnChr</td>
<td>Zn-chromite: ZnCr$_2$O$_4$</td>
<td>$x = 0.998$</td>
<td>17576</td>
<td>Hålenius et al., 2010</td>
<td>17576</td>
<td>1544</td>
<td>1544</td>
</tr>
<tr>
<td>Spn</td>
<td>spinel: MgAl$_2$O$_4$</td>
<td>$x = 0.037$</td>
<td>18420</td>
<td>Hålenius et al., 2010</td>
<td>18458</td>
<td>17518</td>
<td>940</td>
</tr>
<tr>
<td>MgChr</td>
<td>spinel: MgCr$_2$O$_4$</td>
<td>$x = 1$</td>
<td>17518</td>
<td>Hålenius et al., 2010</td>
<td>17518</td>
<td>1544</td>
<td>1544</td>
</tr>
<tr>
<td>Pyr</td>
<td>pyrope: Mg$_3$Al$_2$Si$_2$O$_12$</td>
<td>$x = 0$</td>
<td>18008</td>
<td>Taran et al., 2004</td>
<td>18008</td>
<td>17286</td>
<td>722</td>
</tr>
<tr>
<td>Knr</td>
<td>knorringite: Mg$_3$Cr$_2$Si$_2$O$_12$</td>
<td>$x = 1$</td>
<td>17286</td>
<td>Taran et al., 2004</td>
<td>17286</td>
<td>1544</td>
<td>1544</td>
</tr>
<tr>
<td>Grs</td>
<td>grossular: Ca$_3$Al$_2$Si$_2$O$_12$</td>
<td>$x = 0.005$</td>
<td>16590</td>
<td>Langer et al., 2004</td>
<td>16580</td>
<td>16064</td>
<td>516</td>
</tr>
<tr>
<td>Uvr</td>
<td>uvarovite: Ca$_3$Cr$_2$Si$_2$O$_12$</td>
<td>$x = 0.745$</td>
<td>16230</td>
<td>Langer et al., 2004</td>
<td>16230</td>
<td>15568</td>
<td>516</td>
</tr>
<tr>
<td>Jad</td>
<td>clinopyroxene: NaAl$_2$Si$_2$O$_6$</td>
<td>$x = 0.03$</td>
<td>15740</td>
<td>Khomenko & Platonov, 1985</td>
<td>15743</td>
<td>15568</td>
<td>175</td>
</tr>
<tr>
<td>Ksm</td>
<td>clinopyroxene: NaCr$_2$Si$_2$O$_6$</td>
<td>$x = 0.982$</td>
<td>15568</td>
<td>Khomenko & Platonov, 1985</td>
<td>15568</td>
<td>15568</td>
<td>175</td>
</tr>
</tbody>
</table>
f. REPLACEMENT OF CR$^{3+}$ FOR AL$^{3+}$ AT OCTAHEDRAL SITE

2014.

$$\langle \text{Cr-O} \rangle_{x}^{\text{local}} = \langle \text{Al}_{1-x}\text{Cr}_x\text{-O} \rangle_{x=1} \times [(10Dq_{\text{Cr},x=1}) / (10Dq_{\text{Cr}})]^{1/5}$$

The structural relaxation coefficients stemming from the substitution of Cr for Al in isostructural solid solutions inversely scale with the absolute difference between crystal field strengths of end-members $\Delta 10Dq$.

[Graph showing the relationship between structural relaxation coefficient (ε) and $10Dq(AI_{1-x}Cr_xO_6)$]
f. REPLACEMENT OF CR$^{3+}$ FOR AL$^{3+}$ AT OCTAHEDRAL SITE

The internal stress exerted by the Cr for Al replacement at octahedral sites provokes a strain, previously described in terms of structural relaxation and quantified with ε, which can be related to the structural modifications, such as the volumetric cell compression due to regimes of high-pressure.